Research Article
BibTex RIS Cite

Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri

Year 2019, , 19 - 26, 30.04.2019
https://doi.org/10.18678/dtfd.482351

Abstract

Amaç: Bu çalışmanın amacı, yeşil kimya yöntemiyle çinko oksit nanopartiküllerini (ZnONPs) sentezlemek ve bu nanopartiküllerin anti-bakteriyel ve anti-kanser etkilerini incelemektir.

Gereç ve Yöntemler: Çinko iyonları ve sulu enginar yaprağı (Cynara scolymus) ekstraktı kullanılarak ZnONPs yeşil kimya yöntemiyle sentezlendi. ZnONPs oluşumunun doğrulanması ve karakterizasyonu için morötesi-görünür bölge spektroskopisi (UV-Vis), Fourier dönüşümü kızılötesi spektroskopisi (FTIR), taramalı elektron mikroskobu (SEM), zetasizer ve Enerji dağınım X-ışını spektroskopisi (EDX) analizleri kullanıldı. ZnONPs’nin 4 farklı bakteri türü (E. coli, S. aureus, P. aeruginosa ve E. faecalis) üzerindeki antibakteriyel aktiviteleri, minimal inhibe edici konsantrasyon (MİK) ve kuyucuk difüzyon yöntemiyle ölçüldü. ZnONPs’nin HT-29 insan kolon kanseri hücreleri üzerindeki sitotoksik etkileri konsantrasyon ve zamana bağlı olarak olarak belirlendi.

Bulgular: UV-Vis spektrumunda ZnO’ya spesifik olan 320-335 nm aralığında absorbans artışı gözlemlendi. FTIR spektrumunda 426 cm-1 ve 540 cm-1’de ZnO’ya ait gerilme titreşimleri belirlendi. SEM analizinde partikül boyutu 276-309 nm ölçüldü. ZnONPs’nin zeta-sizer analizlerinde partikül büyüklüğü 137,8 nm ve partikül yükü -6,34 meV olarak bulundu. Antibakteriyel aktivite ölçümlerinde, sentezlenen nanopartiküllerin E. coli ve S. aureus’ta bakteriyel aktivite inhibisyonu sağladığı tespit edildi. ZnONPs HT-29 kolon kanseri hücreleri üzerinde 10 µg/mL’den daha yüksek konsantrasyonlarda sitotoksik etki gösterdi.

Sonuç: ZnONPs’nin düşük maliyetle hazırlanabileceği ve klinik tedavilerde yeni ilaç formülasyonları için taşıyıcı sistem olarak kullanılma potansiyeline sahip olduğu bu çalışma ile gösterilmiştir.

References

  • Santhoskumar J, Venkat Kumar S, Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies. 2017;3(4):459-65.
  • Sutradhar P, Saha M. Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. J Exp Nanosci. 2016;11(5):314-27.
  • Khan ST, Musarrat J, Al-Khedhairy AA. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces. 2016;146:70-83.
  • Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, et al. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater. 2016;297:173-82.
  • Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med. 2009;20(Suppl 1):235-41.
  • Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, et al. Perferential killing of cancer cells anda activated human T cells using ZnO nanoparticles. Nanotecnology. 2008;19(29):295103.
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine. 2011;7(2):184-92.
  • Aksoy B, Atakan N, Aksoy HM, Tezel GG, Renda N, Ozkara HA, et al. Effectiveness of topical zinc oxide application on hypertrophic scar development in rabbits. Burns. 2010;36(7):1027-35.
  • Shokri N, Javar HA. Comparison of calcium phosphate and zinc oxide nanoparticles as dermal penetration enhancers for albumin. Indian J Pharm Sci. 2015;77(6):694-704.
  • Sahdev P, Podaralla S, Kaushik RS, Perumal O. Calcium phosphate nanoparticles fortranscutaneous vaccine delivery. J Biomed Nanotechnol. 2013;9(1):132-41.
  • Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc. 2016;1724(1):020048.
  • Agarval H, Venkat Kumar S, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles - An eco-friendly approach. Resource-Efficient Tecnologies. 2017;3(4):406-13.
  • Abdul Salam H, Sivaraj R, Venckatesh R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-lamiaceae leaf extract. Mater Lett. 2014;131:16-18.
  • Rajendran SP, Sengodan K. Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. Journal of Nanoscience. 2017;2017:8348507.
  • Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C Mater Biol Appl. 2014;41:17-27.
  • Pereira C, Calhelha RC, Barros L, Ferreira ICFR. Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu. Ind Crops Prod. 2013;49:61-5.
  • Nassar MI, Mohamed TK, Elshamy AI, El-Toumy SA, Abdel Lateef AM, Farrag ARH. Chemical constituents and anti-ulcerogenic potential of the scales of Cynara scolymus (artichoke) heads. J Sci Food Agric. 2013;93(10):2494-501.
  • Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008;74(14):1667-77.
  • Machado I, Cesio MV, Dol I, Piston M. A Rapid sample preparation method for the determination of cadmium and lead in spinach and artichoke leaves using ozone. American Journal of Food Science and Technology. 2015;3(3):55-9.
  • Tang X, Wei R, Deng A, Lei T. Protective effects of ethanolic extracts from artichoke, an edible herbal medicine, against acute alcohol-ınduced liver injury in mice. Nutrients. 2017;9(9):1000.
  • Wittemer SM, Ploch M, Windeck T, Müller SC, Drewelow B, Derendorf H, et al. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of artichoke leaf extracts in humans. Phytomedicine. 2005;12(1-2):28-38.
  • Machado I, Dol I, Rodríguez-Arce E, Cesio MV, Piston M. Comparison of different sample treatments for the determination of As, Cd, Cu, Ni, Pb and Zn in globe artichoke (Cynara cardunculus L. subsp. Cardunculus). Microchem J. 2016;128:128-33.
  • Lombardo S, Pandino G, Mauromicale G. Minerals profile of two globe artichoke cultivars as affected by NPK fertilizer regimes. Food Res Int. 2017;100(Pt 2):95-9.
  • Sampaio S, Viana JC. Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Adv Nat Sci-Nanosci. 2018;9:045002.
  • Rao KG, Ashok CH, Rao KV, Chakra CHS, Akshaykranth A. Eco-friendly synthesis of MgO nanoparticles from orange fruit waste. Int J Appl Phys Sci. 2015;2(3):1-6.
  • Joseph S, Mathew B. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq. 2015;204:184-91.
  • Haris M, Kumar A, Ahmad A, Abuzinadah F, Basheikh M, Khan SA, et al. Microwave-assisted green synthesis and antimicrobial activity of silver nanoparticles derived from a supercritical carbon dioxide extract of the fresh aerial parts of Phyllanthus niruri L. Trop J Pharm Res. 2017;16(12):2967-76.
  • Jahangirian H, Haron MJ, Ismail MHS, Rafiee-Moghaddam R, Afsah-Hejri L, Abdollahi Y, et al. Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Dig J Nanomater Bios. 2013;8(3):1263-70.
  • Al-Bayati FA, Sulaiman KD. In vitro antimicrobial activity of salvadora persica l. extracts against some isolated oral pathogens in Iraq. Turk J Biol. 2008;32(1):57-62.
  • Baek SH, Kim YO, Kwag JS, Choi KE, Jung WY, Han DS. Boron trifluoride etherate on silica-A modified Lewis acid reagent (VII). Antitumor activity of cannabigerol against human oral epitheloid carcinoma cells. Arch Pharm Res. 1998;21(3):353-6.
  • Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem. 2012;84(12):5351-7.
  • Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp. 2009;348(1-3):212-6.
  • Sangeetha G, Rajeshwari S, Venckatesh R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater Res Bull. 2011;46(12):2560-6.
  • Ramesh M, Anbuvannan M, Viruthagari G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136(Pt B):864-70.
  • Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical. Sustainable Chem Pharm. 2018;10:9-15.
  • Mirzaei H, Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int. 2017;43(1):907-14.
  • Farag MA, El-Ahmady SH, Elian FS, Wessjohann LA. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics. Phytochemistry. 2013;95:177-87.
  • Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem. 2003;51(3):601-8.
  • Erci F, Cakir-Koc R, Isildak I. Green synthesis of silver nanoparticles using thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity. Artif Cells Nanomed Biotechnol. 2018;46(sup1):150-8.
  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825-34.
  • Varghese E, George M. Green synthesis of zinc oxide nanoparticles. International Journal of Advance Research in Science and Engineering. 2015;4(1):307-14.
  • Chung IM, Rahuman AA, Marimuthu S, Kirthi AV, Anbarasan K, Rajakumar G. An investigation of the cytotoxicity and caspase-mediated apoptotic effect of green synthesized zinc oxide nanoparticles using eclipta prostrata on human liver carcinoma cells. Nanomaterials (Basel). 2015;5(3):1317-30.
  • Yedurkar S, Maurya C, Mahanwar P. Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract-A green approach. Journal of Synthesis Theory and Applications. 2016;5(1):1-14.
  • Aminüzzaman M, Ying LP, Goh WS, Watanebe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci. 2018;41(2):50.
  • Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci. 2015;345:329-36.
  • Gnanasangeetha D, Sarala Thambavani D. One pot synthesis of zinc oxide nanoparticles via chemical and green method. Res J Material Sci. 2013;1(7):1-8.
  • Xiong HM, Shchukin DG, Möhwald H, Xu Y, Xia YY. Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chem Int Ed. 2009;48(15):2727-31.
  • Selvarajan E, Mohanasrinivasan V. Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett. 2013;112:180-2.
  • Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64-70.
  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7(3):219-42.
  • Karvani ZE, Chehrazi P. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res. 2011;5(12):1368-73.
  • Sangani MH, Moghaddam MN, Forghanifard MM. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed J. 2015;2(2):121-28.
  • Kuo CL, Wang CL, Ko HH, Hwang WS, Chang KM, Li WL, et al. Synthesis of zinc oxide nanocrystalline powders for cosmetic applications. Ceram Int. 2010;36(2):693-8.
  • Dao DV, van den Bremt M, Koeller Z, Le TK. Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens. Powder Technol. 2016;288:366-70.
  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714-26.
  • Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine. 2012;7:845-57.
  • Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol. 2014;174(8):2777-90.
  • Chandrasekaran M, Pandurangan M. In vitro selective anti-proliferative effect of zinc oxide nanoparticles against co-cultured C2C12 myoblastoma cancer and 3T3-L1 normal cells. Biol Trace Elem Res. 2016;172(1):148-54.
  • Boroumand Moghaddam AB, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al. Eco-friendly formulated zinc oxide nanoparticles: induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel). 2017;8(10):281.
  • Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact. 2017;278:40-7.
  • Bai DP, Zhang XF, Zhang GL, Huang YF, Gurunathan S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomedicine. 2017;12:6521-35.
  • Hariharan R, Senthilkumar S, Suganthi A, Rajarajan M. Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action. J Photochem Photobiol B. 2012;116:56-65.
  • Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 2012;17(8):852-70.

Green Synthesis, Characterization, Anti-bacterial and Cytotoxic Effects of Zinc Oxide Nanoparticles Using Aqueous Extract of Artichoke Leafs

Year 2019, , 19 - 26, 30.04.2019
https://doi.org/10.18678/dtfd.482351

Abstract

Aim: The aim of this study is to synthesize zinc oxide nanoparticles (ZnONPs) by green chemistry method and investigate anti-bacterial and anticancer effects of these nanoparticles.

Material and Methods: ZnONPs were synthesized by the green chemistry method using zinc ions and aqueous artichoke leaf (Cynara scolymus) extract. Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), zetasizer and energy dispersive X-ray spectroscopy (EDX) were used to confirm the formation and characterization of ZnONPs. Antibacterial activities of ZnONPs on four different bacteria species (E. coli, S. aureus, P. aeruginosa and E. faecalis) were measured by minimal inhibitory concentration (MIC) and agar well diffusion method. Cytotoxic effects of ZnONPs on HT-29 human colon cancer cells were determined as concentration and time dependent.

Results: In the UV-Vis spectrum, absorbance increase was observed in 320-335 nm range which is specific to ZnO. In the FTIR spectrum, stretching vibrations of ZnO were determined in 426 cm-1 and 540 cm-1. The particle size was 276-309 nm in SEM analysis. In the zeta-sizer measurements of ZnONPs, the particle size was 137.8 nm and the particle charge was -6.34 meV. In the antibacterial activity measurements, it was determined that synthesized nanoparticles induce inhibition of bacterial activity in E. coli and S. aureus. ZnONPs showed cytotoxic effects on HT-29 cells at concentrations higher than 10 µg/mL.

Conclusion: This study showed that ZnONPs can be prepared at low cost and have potential to be used as a carrier system for new drug formulations in clinical therapies.

References

  • Santhoskumar J, Venkat Kumar S, Rajeshkumar S. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies. 2017;3(4):459-65.
  • Sutradhar P, Saha M. Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application. J Exp Nanosci. 2016;11(5):314-27.
  • Khan ST, Musarrat J, Al-Khedhairy AA. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B Biointerfaces. 2016;146:70-83.
  • Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, et al. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater. 2016;297:173-82.
  • Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K, et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med. 2009;20(Suppl 1):235-41.
  • Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, et al. Perferential killing of cancer cells anda activated human T cells using ZnO nanoparticles. Nanotecnology. 2008;19(29):295103.
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine. 2011;7(2):184-92.
  • Aksoy B, Atakan N, Aksoy HM, Tezel GG, Renda N, Ozkara HA, et al. Effectiveness of topical zinc oxide application on hypertrophic scar development in rabbits. Burns. 2010;36(7):1027-35.
  • Shokri N, Javar HA. Comparison of calcium phosphate and zinc oxide nanoparticles as dermal penetration enhancers for albumin. Indian J Pharm Sci. 2015;77(6):694-704.
  • Sahdev P, Podaralla S, Kaushik RS, Perumal O. Calcium phosphate nanoparticles fortranscutaneous vaccine delivery. J Biomed Nanotechnol. 2013;9(1):132-41.
  • Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc. 2016;1724(1):020048.
  • Agarval H, Venkat Kumar S, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles - An eco-friendly approach. Resource-Efficient Tecnologies. 2017;3(4):406-13.
  • Abdul Salam H, Sivaraj R, Venckatesh R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-lamiaceae leaf extract. Mater Lett. 2014;131:16-18.
  • Rajendran SP, Sengodan K. Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. Journal of Nanoscience. 2017;2017:8348507.
  • Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C Mater Biol Appl. 2014;41:17-27.
  • Pereira C, Calhelha RC, Barros L, Ferreira ICFR. Antioxidant properties, anti-hepatocellular carcinoma activity and hepatotoxicity of artichoke, milk thistle and borututu. Ind Crops Prod. 2013;49:61-5.
  • Nassar MI, Mohamed TK, Elshamy AI, El-Toumy SA, Abdel Lateef AM, Farrag ARH. Chemical constituents and anti-ulcerogenic potential of the scales of Cynara scolymus (artichoke) heads. J Sci Food Agric. 2013;93(10):2494-501.
  • Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008;74(14):1667-77.
  • Machado I, Cesio MV, Dol I, Piston M. A Rapid sample preparation method for the determination of cadmium and lead in spinach and artichoke leaves using ozone. American Journal of Food Science and Technology. 2015;3(3):55-9.
  • Tang X, Wei R, Deng A, Lei T. Protective effects of ethanolic extracts from artichoke, an edible herbal medicine, against acute alcohol-ınduced liver injury in mice. Nutrients. 2017;9(9):1000.
  • Wittemer SM, Ploch M, Windeck T, Müller SC, Drewelow B, Derendorf H, et al. Bioavailability and pharmacokinetics of caffeoylquinic acids and flavonoids after oral administration of artichoke leaf extracts in humans. Phytomedicine. 2005;12(1-2):28-38.
  • Machado I, Dol I, Rodríguez-Arce E, Cesio MV, Piston M. Comparison of different sample treatments for the determination of As, Cd, Cu, Ni, Pb and Zn in globe artichoke (Cynara cardunculus L. subsp. Cardunculus). Microchem J. 2016;128:128-33.
  • Lombardo S, Pandino G, Mauromicale G. Minerals profile of two globe artichoke cultivars as affected by NPK fertilizer regimes. Food Res Int. 2017;100(Pt 2):95-9.
  • Sampaio S, Viana JC. Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Adv Nat Sci-Nanosci. 2018;9:045002.
  • Rao KG, Ashok CH, Rao KV, Chakra CHS, Akshaykranth A. Eco-friendly synthesis of MgO nanoparticles from orange fruit waste. Int J Appl Phys Sci. 2015;2(3):1-6.
  • Joseph S, Mathew B. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq. 2015;204:184-91.
  • Haris M, Kumar A, Ahmad A, Abuzinadah F, Basheikh M, Khan SA, et al. Microwave-assisted green synthesis and antimicrobial activity of silver nanoparticles derived from a supercritical carbon dioxide extract of the fresh aerial parts of Phyllanthus niruri L. Trop J Pharm Res. 2017;16(12):2967-76.
  • Jahangirian H, Haron MJ, Ismail MHS, Rafiee-Moghaddam R, Afsah-Hejri L, Abdollahi Y, et al. Well diffusion method for evaluation of antibacterial activity of copper phenyl fatty hydroxamate synthesized from canola and palm kernel oils. Dig J Nanomater Bios. 2013;8(3):1263-70.
  • Al-Bayati FA, Sulaiman KD. In vitro antimicrobial activity of salvadora persica l. extracts against some isolated oral pathogens in Iraq. Turk J Biol. 2008;32(1):57-62.
  • Baek SH, Kim YO, Kwag JS, Choi KE, Jung WY, Han DS. Boron trifluoride etherate on silica-A modified Lewis acid reagent (VII). Antitumor activity of cannabigerol against human oral epitheloid carcinoma cells. Arch Pharm Res. 1998;21(3):353-6.
  • Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem. 2012;84(12):5351-7.
  • Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp. 2009;348(1-3):212-6.
  • Sangeetha G, Rajeshwari S, Venckatesh R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater Res Bull. 2011;46(12):2560-6.
  • Ramesh M, Anbuvannan M, Viruthagari G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136(Pt B):864-70.
  • Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG. Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical. Sustainable Chem Pharm. 2018;10:9-15.
  • Mirzaei H, Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int. 2017;43(1):907-14.
  • Farag MA, El-Ahmady SH, Elian FS, Wessjohann LA. Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics. Phytochemistry. 2013;95:177-87.
  • Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem. 2003;51(3):601-8.
  • Erci F, Cakir-Koc R, Isildak I. Green synthesis of silver nanoparticles using thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity. Artif Cells Nanomed Biotechnol. 2018;46(sup1):150-8.
  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825-34.
  • Varghese E, George M. Green synthesis of zinc oxide nanoparticles. International Journal of Advance Research in Science and Engineering. 2015;4(1):307-14.
  • Chung IM, Rahuman AA, Marimuthu S, Kirthi AV, Anbarasan K, Rajakumar G. An investigation of the cytotoxicity and caspase-mediated apoptotic effect of green synthesized zinc oxide nanoparticles using eclipta prostrata on human liver carcinoma cells. Nanomaterials (Basel). 2015;5(3):1317-30.
  • Yedurkar S, Maurya C, Mahanwar P. Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract-A green approach. Journal of Synthesis Theory and Applications. 2016;5(1):1-14.
  • Aminüzzaman M, Ying LP, Goh WS, Watanebe A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci. 2018;41(2):50.
  • Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci. 2015;345:329-36.
  • Gnanasangeetha D, Sarala Thambavani D. One pot synthesis of zinc oxide nanoparticles via chemical and green method. Res J Material Sci. 2013;1(7):1-8.
  • Xiong HM, Shchukin DG, Möhwald H, Xu Y, Xia YY. Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II). Angew Chem Int Ed. 2009;48(15):2727-31.
  • Selvarajan E, Mohanasrinivasan V. Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett. 2013;112:180-2.
  • Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64-70.
  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7(3):219-42.
  • Karvani ZE, Chehrazi P. Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria. Afr J Microbiol Res. 2011;5(12):1368-73.
  • Sangani MH, Moghaddam MN, Forghanifard MM. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed J. 2015;2(2):121-28.
  • Kuo CL, Wang CL, Ko HH, Hwang WS, Chang KM, Li WL, et al. Synthesis of zinc oxide nanocrystalline powders for cosmetic applications. Ceram Int. 2010;36(2):693-8.
  • Dao DV, van den Bremt M, Koeller Z, Le TK. Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens. Powder Technol. 2016;288:366-70.
  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714-26.
  • Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine. 2012;7:845-57.
  • Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol. 2014;174(8):2777-90.
  • Chandrasekaran M, Pandurangan M. In vitro selective anti-proliferative effect of zinc oxide nanoparticles against co-cultured C2C12 myoblastoma cancer and 3T3-L1 normal cells. Biol Trace Elem Res. 2016;172(1):148-54.
  • Boroumand Moghaddam AB, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al. Eco-friendly formulated zinc oxide nanoparticles: induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel). 2017;8(10):281.
  • Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact. 2017;278:40-7.
  • Bai DP, Zhang XF, Zhang GL, Huang YF, Gurunathan S. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomedicine. 2017;12:6521-35.
  • Hariharan R, Senthilkumar S, Suganthi A, Rajarajan M. Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action. J Photochem Photobiol B. 2012;116:56-65.
  • Sharma V, Anderson D, Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis. 2012;17(8):852-70.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Article
Authors

Ömer Erdoğan 0000-0002-8327-7077

Fatih Birtekocak This is me 0000-0003-1212-8346

Erman Oryaşın 0000-0003-1242-7434

Mürüvvet Abbak This is me 0000-0001-7743-6265

Gülen Melike Demirbolat 0000-0001-5621-5818

Salih Paşa 0000-0002-4792-8821

Özge Çevik This is me 0000-0002-9325-3757

Publication Date April 30, 2019
Submission Date November 13, 2018
Published in Issue Year 2019

Cite

APA Erdoğan, Ö., Birtekocak, F., Oryaşın, E., Abbak, M., et al. (2019). Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri. Duzce Medical Journal, 21(1), 19-26. https://doi.org/10.18678/dtfd.482351
AMA Erdoğan Ö, Birtekocak F, Oryaşın E, Abbak M, Demirbolat GM, Paşa S, Çevik Ö. Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri. Duzce Med J. April 2019;21(1):19-26. doi:10.18678/dtfd.482351
Chicago Erdoğan, Ömer, Fatih Birtekocak, Erman Oryaşın, Mürüvvet Abbak, Gülen Melike Demirbolat, Salih Paşa, and Özge Çevik. “Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel Ve Sitotoksik Etkileri”. Duzce Medical Journal 21, no. 1 (April 2019): 19-26. https://doi.org/10.18678/dtfd.482351.
EndNote Erdoğan Ö, Birtekocak F, Oryaşın E, Abbak M, Demirbolat GM, Paşa S, Çevik Ö (April 1, 2019) Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri. Duzce Medical Journal 21 1 19–26.
IEEE Ö. Erdoğan, F. Birtekocak, E. Oryaşın, M. Abbak, G. M. Demirbolat, S. Paşa, and Ö. Çevik, “Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri”, Duzce Med J, vol. 21, no. 1, pp. 19–26, 2019, doi: 10.18678/dtfd.482351.
ISNAD Erdoğan, Ömer et al. “Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel Ve Sitotoksik Etkileri”. Duzce Medical Journal 21/1 (April 2019), 19-26. https://doi.org/10.18678/dtfd.482351.
JAMA Erdoğan Ö, Birtekocak F, Oryaşın E, Abbak M, Demirbolat GM, Paşa S, Çevik Ö. Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri. Duzce Med J. 2019;21:19–26.
MLA Erdoğan, Ömer et al. “Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel Ve Sitotoksik Etkileri”. Duzce Medical Journal, vol. 21, no. 1, 2019, pp. 19-26, doi:10.18678/dtfd.482351.
Vancouver Erdoğan Ö, Birtekocak F, Oryaşın E, Abbak M, Demirbolat GM, Paşa S, Çevik Ö. Enginar Yaprağı Sulu Ekstraktı Kullanılarak Çinko Oksit Nanopartiküllerinin Yeşil Sentezi, Karakterizasyonu, Anti-Bakteriyel ve Sitotoksik Etkileri. Duzce Med J. 2019;21(1):19-26.

Cited By