Research Article
BibTex RIS Cite

Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc

Year 2021, , 66 - 75, 30.04.2021
https://doi.org/10.18678/dtfd.864114

Abstract

Aim: Crimean Congo Hemorrhagic Fever (CCHF) is a lethal, endemic infectious disease in human. For the preventive measures of the disease, there is currently no safe and efficient vaccine, widely for human use. Vaccine development for CCHF virus is an actively researched subject. In this study, we aimed to investigate the immunizing and protective potentials of the CCHF virus surface glycoprotein Gc that is delivered as a single antigen via a DNA based vaccine vector.
Material and Methods: A DNA based vaccine targeting the immunogenic envelope glycoprotein Gc of a CCHF virus isolate with Turkey origin (Ank2) was generated and its immunogenicity and protective capability against lethal challenge in IFNα/βR-/- receptor knock out mice was assessed.
Results: The developed vaccine candidate (pGc) elicited a considerable amount of neutralizing antibody responses in the vaccinated mice. The vaccine candidate significantly induced both antiviral Th1 and B cell activating Th2 immune responses deduced from the cytokine production profiles in the vaccinated mice. However, despite the immune responses elicited post-immunization, the vaccine failed to confer protection against lethal CCHF virus infection.
Conclusion: To the best of our knowledge, this is the first report of a DNA vaccine candidate generated against CCHF virus based on the glycoprotein Gc. The pGc vaccine candidate exhibited antigen-specific immunity in IFN/α/βR-/- mice, but was unable to produce a protection upon lethal challenge with the homologous CCHF virus. Once we comprehensively understand the immune correlates of protection, we will be more eligible to significantly improve the efficacy of vaccines.

Supporting Institution

Tubitak

Project Number

115S074

Thanks

This research study was partially funded by The Scientific and Technological Research Council of Turkey (TUBITAK) under the 1003-Primary Subjects R&D Funding Program with the project number of 115S074. Part of this study was orally presented by the first author Ergin Sahin in the 2nd International Conference on Crimean Congo Hemorrhagic Fever which was held in Thessaloniki/Greece on the 10th–12th of September 2017 (PMID: 29199036).

References

  • Knipe DM, Howley PM. Fields virology. 6th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2013.
  • Leblebicioglu H. Crimean-Congo haemorrhagic fever in Eurasia. Int J Antimicrob Agents. 2010;36(Suppl 1):S43-6.
  • Vorou R, Pierroutsakos IN, Maltezou HC. Crimean-Congo hemorrhagic fever. Curr Opin Infect Dis. 2007;20(5):495-500.
  • Whitehouse CA. Crimean-Congo hemorrhagic fever. Antiviral Res. 2004;64(3):145-60.
  • Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Res. 2013;98(2):248-60.
  • Messina JP, Pigott DM, Duda KA, Brownstein JS, Myers MF, George DB, et al. A global compendium of human Crimean-Congo haemorrhagic fever virus occurrence. Sci Data. 2015;2:150016.
  • Leblebicioglu H, Ozaras R, Irmak H, Sencan I. Crimean-Congo hemorrhagic fever in Turkey: Current status and future challenges. Antiviral Res. 2016;126:21-34.
  • Bente DA, Alimonti JB, Shieh WJ, Camus G, Ströher U, Zaki S, et al. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol. 2010;84(21):11089-100.
  • Bereczky S, Lindegren G, Karlberg H, Akerström S, Klingström J, Mirazimi A. Crimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. J Gen Virol. 2010;91(Pt 6):1473-7.
  • Papa A, Papadimitriou E, Christova I. The Bulgarian vaccine Crimean-Congo haemorrhagic fever virus strain. Scand J Infect Dis. 2011;43(3):225-9.
  • Aligholipour Farzani T, Földes K, Hanifehnezhad A, Yener Ilce B, Bilge Dagalp S, Amirzadeh Khiabani N, et al. Bovine Herpesvirus type 4 (BoHV-4) vector delivering nucleocapsid protein of Crimean-Congo hemorrhagic fever virus induces comparable protective immunity against lethal challenge in IFNα/β/γR-/- mice models. Viruses. 2019;11(3):237.
  • Aligholipour Farzani T, Hanifehnezhad A, Földes K, Ergünay K, Yilmaz E, Hashim Mohamed Ali H, et al. Co-delivery effect of CD24 on the immunogenicity and lethal challenge protection of a DNA vector expressing nucleocapsid protein of Crimean Congo hemorrhagic fever virus. Viruses. 2019;11(1):75.
  • Buttigieg KR, Dowall SD, Findlay-Wilson S, Miloszewska A, Rayner E, Hewson R, et al. A novel vaccine against Crimean-Congo haemorrhagic fever protects 100% of animals against lethal challenge in a mouse model. PLoS One. 2014;9(3):e91516.
  • Canakoglu N, Berber E, Tonbak S, Ertek M, Sozdutmaz I, Aktas M, et al. Immunization of knock-out α/β interferon receptor mice against high lethal dose of Crimean-Congo hemorrhagic fever virus with a cell culture based vaccine. PLoS Negl Trop Dis. 2015;9(3):e0003579.
  • Dowall SD, Graham VA, Rayner E, Hunter L, Watson R, Taylor I, et al. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo haemorrhagic fever virus require both cellular and humoral responses. PLoS One. 2016;11(6):e0156637.
  • Garrison AR, Shoemaker CJ, Golden JW, Fitzpatrick CJ, Suschak JJ, Richards MJ, et al. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl Trop Dis. 2017;11(9):e0005908.
  • Hinkula J, Devignot S, Åkerström S, Karlberg H, Wattrang E, Bereczky S, et al. Immunization with DNA plasmids coding for Crimean-Congo hemorrhagic fever virus capsid and envelope proteins and/or virus-like particles induces protection and survival in challenged mice. J Virol. 2017;91(10):e02076-16.
  • Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis. 2018;12(7):e0006628.
  • Dowall SD, Carroll MW, Hewson R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine. 2017;35(44):6015-23.
  • Phelan K, May KM. Basic techniques in mammalian cell tissue culture. Curr Protoc Cell Biol. 2015;66:1-22.
  • Zhang Y, Werling U, Edelmann W. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res. 2012;40(8):e55.
  • Green MR, Sambrook J. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2012.
  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-4.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-25.
  • Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39(4):783-91.
  • Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5439.
  • Dowall SD, Buttigieg KR, Findlay-Wilson SJ, Rayner E, Pearson G, Miloszewska A, et al. A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Hum Vaccin Immunother. 2016;12(2):519-27.
  • Loomis RJ, Johnson PR. Gene-based vaccine approaches for respiratory syncytial virus. Curr Top Microbiol Immunol. 2013;372:307-24.
  • Li X, Sambhara S, Li CX, Ettorre L, Switzer I, Cates G, et al. Plasmid DNA encoding the respiratory syncytial virus G protein is a promising vaccine candidate. Virology. 2000;269(1):54-65.
  • Ma Y, Jiao YY, Yu YZ, Jiang N, Hua Y, Zhang XJ, et al. A built-in CpG adjuvant in RSV F protein DNA vaccine drives a Th1 polarized and enhanced protective immune response. Viruses. 2018;10(1):38.
  • Al-Amri SS, Abbas AT, Siddiq LA, Alghamdi A, Sanki MA, Al-Muhanna MK, et al. Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein. Sci Rep. 2017;7:44875.
  • Ferreira DM, Darrieux M, Oliveira ML, Leite LC, Miyaji EN. Optimized immune response elicited by a DNA vaccine expressing pneumococcal surface protein a is characterized by a balanced immunoglobulin G1 (IgG1)/IgG2a ratio and proinflammatory cytokine production. Clin Vaccine Immunol. 2008;15(3):499-505.
  • Xu J, Bai X, Wang LB, Shi HN, Van Der Giessen JWB, Boireau P, et al. Immune responses in mice vaccinated with a DNA vaccine expressing serine protease-like protein from the new-born larval stage of Trichinella spiralis. Parasitology. 2017;144(6):712-9.
  • Bertolotti-Ciarlet A, Smith J, Strecker K, Paragas J, Altamura LA, McFalls JM, et al. Cellular localization and antigenic characterization of Crimean-Congo hemorrhagic fever virus glycoproteins. J Virol. 2005;79(10):6152-61.
  • Zivcec M, Safronetz D, Scott D, Robertson S, Ebihara H, Feldmann H. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon α/β receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy. J Infect Dis. 2013;207(12):1909-21.
  • Frenz T, Waibler Z, Hofmann J, Hamdorf M, Lantermann M, Reizis B, et al. Concomitant type I IFN receptor-triggering of T cells and of DC is required to promote maximal modified vaccinia virus Ankara-induced T-cell expansion. Eur J Immunol. 2010;40(10):2769-77.
  • Kortekaas J, Vloet RP, McAuley AJ, Shen X, Bosch BJ, de Vries L, et al. Crimean-Congo hemorrhagic fever virus subunit vaccines induce high levels of neutralizing antibodies but no protection in STAT1 knockout mice. Vector Borne Zoonotic Dis. 2015;15(12):759-64.

Kırım Kongo Kanamalı Ateşi Virüsü Glikoprotein Gc’yi Hedef Alan Bir DNA Aşısının Bağışıklık ve Koruyuculuk Sağlama Özelliklerinin Değerlendirilmesi

Year 2021, , 66 - 75, 30.04.2021
https://doi.org/10.18678/dtfd.864114

Abstract

Amaç: Kırım Kongo Kanamalı Ateşi (KKKA), insanda ölümcül, endemik bir enfeksiyon hastalığıdır. Hastalığın önleyici tedbirleri için şu anda insanlarda yaygın olarak kullanılmak üzere güvenli ve etkili bir aşı bulunmamaktadır. KKKA virüsü için aşı geliştirilmesi, aktif olarak araştırılan bir konudur. Bu çalışmada, DNA esaslı bir aşı vektörü ile tek bir antijen olarak verilen KKKA virüsü yüzey glikoproteini Gc'nin bağışıklık kazandırıcı ve koruyucu potansiyellerinin araştırılması amaçlanmıştır.
Gereç ve Yöntemler: Türkiye menşeli (Ank2) bir KKKA virüs izolatının immünojenik özellikteki zarf glikoproteini Gc'yi hedefleyen DNA esaslı bir aşı oluşturulmuş ve bu aşı adayının immünojenisitesi ve aşılanmış IFNα/βR-/- farelerde öldürücü doza karşı koruyucu yeteneği değerlendirilmiştir.
Bulgular: Geliştirilen aşı adayı (pGc), aşılanmış farelerde önemli miktarda nötralize edici antikor yanıtı ortaya çıkardı. Aşı adayı, aşılanmış farelerde hem antiviral Th1, hem de B hücresini aktive eden Th2 bağışıklık tepkilerini önemli ölçüde uyardı. Bununla birlikte, aşılama sonrasında ortaya çıkan bağışıklık yanıtlarına rağmen, aşı, ölümcül KKKA virüsü enfeksiyonuna karşı koruma sağlayamadı.
Sonuç: Bildiğimiz kadarıyla bu çalışma, glikoprotein Gc'yi hedef alan KKKA virüsüne karşı oluşturulan bir DNA aşı adayının ilk raporudur. PGc aşı adayı, IFNα/βR-/- farelerde antijene özgü bağışıklık yanıtı oluşturdu, ancak ölümcül dozdaki homolog KKKA virüsüne karşı bir koruma üretemedi. Aşı aracılı korunmanın bağışıklık ile olan ilişkilerini daha detaylı olarak anladığımızda, aşıların etkinliğini önemli ölçüde iyileştirme kabiliyetine sahip olacağız.

Project Number

115S074

References

  • Knipe DM, Howley PM. Fields virology. 6th ed. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2013.
  • Leblebicioglu H. Crimean-Congo haemorrhagic fever in Eurasia. Int J Antimicrob Agents. 2010;36(Suppl 1):S43-6.
  • Vorou R, Pierroutsakos IN, Maltezou HC. Crimean-Congo hemorrhagic fever. Curr Opin Infect Dis. 2007;20(5):495-500.
  • Whitehouse CA. Crimean-Congo hemorrhagic fever. Antiviral Res. 2004;64(3):145-60.
  • Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Res. 2013;98(2):248-60.
  • Messina JP, Pigott DM, Duda KA, Brownstein JS, Myers MF, George DB, et al. A global compendium of human Crimean-Congo haemorrhagic fever virus occurrence. Sci Data. 2015;2:150016.
  • Leblebicioglu H, Ozaras R, Irmak H, Sencan I. Crimean-Congo hemorrhagic fever in Turkey: Current status and future challenges. Antiviral Res. 2016;126:21-34.
  • Bente DA, Alimonti JB, Shieh WJ, Camus G, Ströher U, Zaki S, et al. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol. 2010;84(21):11089-100.
  • Bereczky S, Lindegren G, Karlberg H, Akerström S, Klingström J, Mirazimi A. Crimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout mice. J Gen Virol. 2010;91(Pt 6):1473-7.
  • Papa A, Papadimitriou E, Christova I. The Bulgarian vaccine Crimean-Congo haemorrhagic fever virus strain. Scand J Infect Dis. 2011;43(3):225-9.
  • Aligholipour Farzani T, Földes K, Hanifehnezhad A, Yener Ilce B, Bilge Dagalp S, Amirzadeh Khiabani N, et al. Bovine Herpesvirus type 4 (BoHV-4) vector delivering nucleocapsid protein of Crimean-Congo hemorrhagic fever virus induces comparable protective immunity against lethal challenge in IFNα/β/γR-/- mice models. Viruses. 2019;11(3):237.
  • Aligholipour Farzani T, Hanifehnezhad A, Földes K, Ergünay K, Yilmaz E, Hashim Mohamed Ali H, et al. Co-delivery effect of CD24 on the immunogenicity and lethal challenge protection of a DNA vector expressing nucleocapsid protein of Crimean Congo hemorrhagic fever virus. Viruses. 2019;11(1):75.
  • Buttigieg KR, Dowall SD, Findlay-Wilson S, Miloszewska A, Rayner E, Hewson R, et al. A novel vaccine against Crimean-Congo haemorrhagic fever protects 100% of animals against lethal challenge in a mouse model. PLoS One. 2014;9(3):e91516.
  • Canakoglu N, Berber E, Tonbak S, Ertek M, Sozdutmaz I, Aktas M, et al. Immunization of knock-out α/β interferon receptor mice against high lethal dose of Crimean-Congo hemorrhagic fever virus with a cell culture based vaccine. PLoS Negl Trop Dis. 2015;9(3):e0003579.
  • Dowall SD, Graham VA, Rayner E, Hunter L, Watson R, Taylor I, et al. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo haemorrhagic fever virus require both cellular and humoral responses. PLoS One. 2016;11(6):e0156637.
  • Garrison AR, Shoemaker CJ, Golden JW, Fitzpatrick CJ, Suschak JJ, Richards MJ, et al. A DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse models. PLoS Negl Trop Dis. 2017;11(9):e0005908.
  • Hinkula J, Devignot S, Åkerström S, Karlberg H, Wattrang E, Bereczky S, et al. Immunization with DNA plasmids coding for Crimean-Congo hemorrhagic fever virus capsid and envelope proteins and/or virus-like particles induces protection and survival in challenged mice. J Virol. 2017;91(10):e02076-16.
  • Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis. 2018;12(7):e0006628.
  • Dowall SD, Carroll MW, Hewson R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine. 2017;35(44):6015-23.
  • Phelan K, May KM. Basic techniques in mammalian cell tissue culture. Curr Protoc Cell Biol. 2015;66:1-22.
  • Zhang Y, Werling U, Edelmann W. SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res. 2012;40(8):e55.
  • Green MR, Sambrook J. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2012.
  • Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-4.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-25.
  • Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39(4):783-91.
  • Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5439.
  • Dowall SD, Buttigieg KR, Findlay-Wilson SJ, Rayner E, Pearson G, Miloszewska A, et al. A Crimean-Congo hemorrhagic fever (CCHF) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Hum Vaccin Immunother. 2016;12(2):519-27.
  • Loomis RJ, Johnson PR. Gene-based vaccine approaches for respiratory syncytial virus. Curr Top Microbiol Immunol. 2013;372:307-24.
  • Li X, Sambhara S, Li CX, Ettorre L, Switzer I, Cates G, et al. Plasmid DNA encoding the respiratory syncytial virus G protein is a promising vaccine candidate. Virology. 2000;269(1):54-65.
  • Ma Y, Jiao YY, Yu YZ, Jiang N, Hua Y, Zhang XJ, et al. A built-in CpG adjuvant in RSV F protein DNA vaccine drives a Th1 polarized and enhanced protective immune response. Viruses. 2018;10(1):38.
  • Al-Amri SS, Abbas AT, Siddiq LA, Alghamdi A, Sanki MA, Al-Muhanna MK, et al. Immunogenicity of candidate MERS-CoV DNA vaccines based on the spike protein. Sci Rep. 2017;7:44875.
  • Ferreira DM, Darrieux M, Oliveira ML, Leite LC, Miyaji EN. Optimized immune response elicited by a DNA vaccine expressing pneumococcal surface protein a is characterized by a balanced immunoglobulin G1 (IgG1)/IgG2a ratio and proinflammatory cytokine production. Clin Vaccine Immunol. 2008;15(3):499-505.
  • Xu J, Bai X, Wang LB, Shi HN, Van Der Giessen JWB, Boireau P, et al. Immune responses in mice vaccinated with a DNA vaccine expressing serine protease-like protein from the new-born larval stage of Trichinella spiralis. Parasitology. 2017;144(6):712-9.
  • Bertolotti-Ciarlet A, Smith J, Strecker K, Paragas J, Altamura LA, McFalls JM, et al. Cellular localization and antigenic characterization of Crimean-Congo hemorrhagic fever virus glycoproteins. J Virol. 2005;79(10):6152-61.
  • Zivcec M, Safronetz D, Scott D, Robertson S, Ebihara H, Feldmann H. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon α/β receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy. J Infect Dis. 2013;207(12):1909-21.
  • Frenz T, Waibler Z, Hofmann J, Hamdorf M, Lantermann M, Reizis B, et al. Concomitant type I IFN receptor-triggering of T cells and of DC is required to promote maximal modified vaccinia virus Ankara-induced T-cell expansion. Eur J Immunol. 2010;40(10):2769-77.
  • Kortekaas J, Vloet RP, McAuley AJ, Shen X, Bosch BJ, de Vries L, et al. Crimean-Congo hemorrhagic fever virus subunit vaccines induce high levels of neutralizing antibodies but no protection in STAT1 knockout mice. Vector Borne Zoonotic Dis. 2015;15(12):759-64.
There are 37 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Ergin Sahin 0000-0003-1711-738X

Arzu Çöleri Cihan 0000-0002-7289-6251

Touraj Aligholipour 0000-0002-1392-4048

Katalin Foldes 0000-0001-6406-8168

Evren Doruk Engin 0000-0001-9209-8858

Aykut Özkul 0000-0001-5008-9443

Project Number 115S074
Publication Date April 30, 2021
Submission Date January 19, 2021
Published in Issue Year 2021

Cite

APA Sahin, E., Çöleri Cihan, A., Aligholipour, T., Foldes, K., et al. (2021). Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc. Duzce Medical Journal, 23(1), 66-75. https://doi.org/10.18678/dtfd.864114
AMA Sahin E, Çöleri Cihan A, Aligholipour T, Foldes K, Engin ED, Özkul A. Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc. Duzce Med J. April 2021;23(1):66-75. doi:10.18678/dtfd.864114
Chicago Sahin, Ergin, Arzu Çöleri Cihan, Touraj Aligholipour, Katalin Foldes, Evren Doruk Engin, and Aykut Özkul. “Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc”. Duzce Medical Journal 23, no. 1 (April 2021): 66-75. https://doi.org/10.18678/dtfd.864114.
EndNote Sahin E, Çöleri Cihan A, Aligholipour T, Foldes K, Engin ED, Özkul A (April 1, 2021) Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc. Duzce Medical Journal 23 1 66–75.
IEEE E. Sahin, A. Çöleri Cihan, T. Aligholipour, K. Foldes, E. D. Engin, and A. Özkul, “Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc”, Duzce Med J, vol. 23, no. 1, pp. 66–75, 2021, doi: 10.18678/dtfd.864114.
ISNAD Sahin, Ergin et al. “Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc”. Duzce Medical Journal 23/1 (April 2021), 66-75. https://doi.org/10.18678/dtfd.864114.
JAMA Sahin E, Çöleri Cihan A, Aligholipour T, Foldes K, Engin ED, Özkul A. Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc. Duzce Med J. 2021;23:66–75.
MLA Sahin, Ergin et al. “Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc”. Duzce Medical Journal, vol. 23, no. 1, 2021, pp. 66-75, doi:10.18678/dtfd.864114.
Vancouver Sahin E, Çöleri Cihan A, Aligholipour T, Foldes K, Engin ED, Özkul A. Assessment of the Immunogenicity and Protective Aspects of a DNA Vaccine Targeting Crimean Congo Hemorrhagic Fever Virus Glycoprotein Gc. Duzce Med J. 2021;23(1):66-75.