Review
BibTex RIS Cite

A Review of the Progress of COVID-19 Vaccine Development

Year 2021, , 1 - 23, 30.03.2021
https://doi.org/10.18678/dtfd.890089

Abstract

A coronavirus disease pandemic (COVID-19) is still a global problem with not sufficient evidence of a declining pattern caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is generally accepted that normal life is impeded by securing a reliable vaccine strategy. Many countries have accelerated the process of clinical trials to create effective treatment with COVID-19. More than 200 candidate vaccines have been started for SARS-CoV-2 testing. This review attempts to provide an overview of the currently emerging COVID-19 vaccine types, address the theoretical and practical challenges of vaccines for COVID-19 and discuss possible strategies to help vaccine design succeed. The first move was to take out papers using the initial keyword “pandemics, vaccines and vaccine types”. A total of 63,538 results (including 1,200 journals; 16,875 books; and 12,871 web pages), with the initial keyword, searched for in the Scopus database. Further improvements were searched on keywords such as "pandemic and vaccine types" (711 newspapers and 5,053 webpages). This review attempts to overview the historical and important basic information about the pandemics viz. history, virological characteristics, structure, origin and physio-chemical properties. The second phase includes the vaccination types and strategies in depth. It includes the diagnosis, virology and pathogenesis of SARS-CoV-2 and SARS-COV-2/COVID-19 vaccines. The development, planning strategies, types, cost and current scenarios of COVID-19 vaccines are depicted in detail. The pandemic COVID-19 as it continues, is a global problem. Vaccination seems to be an efficient and economical way to mitigate and control the epidemic. This requires a mass production of successful COVID-19 vaccines.

References

  • Dyer O. Covid-19: Trump sought to buy vaccine developer exclusively for US, say German officials. BMJ. 2020;368:m1100.
  • Adegbola RA, Secka O, Lahai G, Lloyd-Evans N, Njie A, Usen S, et al. Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet. 2005;366(9480):144-50.
  • Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. 2020;[Epub ahead of print]. doi:10.1080/07391102.2020.1758788
  • Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;183(6):1735.
  • Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PloS One. 2012;7(4):e35421.
  • Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 2016;12(9):2351-6.
  • Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med. 2009;15(1):34-41.
  • Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26(7):1470-7.
  • Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020;41(19):1798-1800.
  • Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-8.
  • Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382(24):2327-36.
  • Almedia J, Berry D, Cunningham C. Virology: Coronavirus. Nature. 1968;220(5168):650.
  • Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017;25(1):35-48.
  • Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020;133(9):1015-24.
  • Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-15.
  • Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-1207.
  • Lei J, Li J, Li X, Qi X. CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):18.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe acute respiratory syndrome coronavirus 2- specific antibody responses in coronavirus disease 2019 patients. Emerg Infect Dis. 2020;26(7):1478-88.
  • Gupta P. A Review: Epidemiology, pathogenesis and prospect in developing vaccines for novel coronavirus (COVID-19). Indian J Tuberc. 2020;[Epub ahead of print]. doi:10.1016/j.ijtb.2020.09.021
  • who.int [Internet]. World Health Organization. Coronavirus disease (COVID-19): Similarities and differences with influenza. [Cited: 2021 Jan 31]. Available from: https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-similarities-and-differences-with-influenza.
  • Chakraborty R, Parvez S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem Pharmacol. 2020;180:114184.
  • Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-78.
  • Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-6.
  • Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-99.
  • Moreno L, Pearson AD. How can attrition rates be reduced in cancer drug discovery? Expert Opin Drug Discov. 2013;8(4):363-8.
  • Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-63.
  • Sonawane K, Barale SS, Dhanavade MJ, Waghmare SR, Nadaf NH, Kamble SA, et al. Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-Coronavirus-2. ChemRxiv. 2020. doi:10.26434/chemrxiv.12162360.v1
  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.
  • Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3.
  • Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020;[Epub ahead of print]. doi: 10.1016/S0140-6736(20)31180-6
  • Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huitsing K, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396-403.
  • Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383(6):517-25.
  • Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389(10068):505-18.
  • Brende B, Farrar J, Gashumba D, Moedas C, Mundel T, Shiozaki Y, et al. CEPI-a new global R&D organisation for epidemic preparedness and response. Lancet. 2017;389(10066):233-5.
  • Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Front Immunol. 2018;9:1963.
  • fda.gov [Internet]. Food and Drug Administration. Guidance for industry: General principles for the development of vaccines to protect against global infectious diseases. [Cited: 2021 Jan 31]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-development-vaccines-protect-against-global-infectious-diseases.
  • Plotkin S, Robinson JM, Cunningham G, Iqbal R, Larsen S. The complexity and cost of vaccine manufacturing- an overview. Vaccine. 2017;35(33):4064-71.
  • Callaway E. The race for coronavirus vaccines: a graphical guide. Nature. 2020;580(7805):576-7.
  • Lee CYP, Lin RTP, Renia L, Ng LFP. Serological approaches for COVID-19: Epidemiologic perspective on surveillance and control. Front Immunol. 2020;11:879.
  • Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AV, Dorrell L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol. 2016;41:47-54.
  • Poland GA. Another coronavirus, another epidemic, another warning. Vaccine. 2020;38(10):v-vi.
  • Dömling A, Gao L. Chemistry and biology of SARS-CoV-2. Chem. 2020;6(6):1283-95.
  • Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8.
  • Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894-904.
  • Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the cardiologist: basic virology, epidemiology, cardiac manifestations, and potential therapeutic strategies. JACC: Basic Transl Sci. 2020;5(5):518-36.
  • Coulthard P. Dentistry and coronavirus (COVID-19)-moral decision-making. Br Dent J. 2020;228(7):503-5.
  • Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905-13.
  • Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020;16(6):1232-38.
  • Shih HI, Wu CJ, Tu YF, Chi CY. Fighting COVID-19: a quick review of diagnoses, therapies, and vaccines. Biomed J. 2020;43(4):341-54.
  • Velavan TP, Meyer CG. The COVID‐19 epidemic. Trop Med Int Health. 2020;25(3):278-80.
  • Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954.
  • Chau VQ, Oliveros E, Mahmood K, Singhvi A, Lala A, Moss N, et al. The imperfect cytokine storm: severe COVID-19 with ARDS in patient on durable LVAD Support. JACC Case Rep. 2020;2(9):1315-20.
  • Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9(1):382-5.
  • Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis. 2020;35:101647.
  • Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, et al. The potential chemical structure of anti‐SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol. 2020;92(6):693-7.
  • Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295(15):4773-9.
  • Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352-71.
  • Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. MAbs; 2020;12(1):1703531.
  • Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect. 2020;53(3):436-43.
  • Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing). 2020;6(10):1192-98.
  • McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res. 2020;157:104859.
  • Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev. 2020;19(5):102523.
  • Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55(5):105938.
  • Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020;55(4):105932.
  • Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, Kulkarni S, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci. 2020;256:117883.
  • Zhu Y, Li J, Pang Z. Recent insights for the emerging COVID-19: drug discovery, therapeutic options and vaccine development. Asian J Pharm Sci. 2021;16(1):4-23.
  • Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev. 2020;35:43-9.
  • Ojha R, Gupta N, Naik B, Singh S, Verma VK, Prusty D, et al. High throughput and comprehensive approach to develop multiepitope vaccine against minacious COVID-19. Eur J Pharm Sci. 2020;151:105375.
  • Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5:18.
  • Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine. 2020;55:102743.
  • Dashraath P, Wong JLJ, Lim MXK, Lim LM, Li S, Biswas A, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521-31.
  • Ji H, Yan Y, Ding B, Guo W, Brunswick M, Niethammer A, et al. Novel decoy cellular vaccine strategy utilizing transgenic antigen-expressing cells as immune presenter and adjuvant in vaccine prototype against SARS-CoV-2 virus. Med Drug Discov. 2020;5:100026.
  • Modi P, Mihic M, Lewin A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist™ system. Diabetes Metab Res Rev. 2002;18(Suppl 1):S38-42.
  • Jia R, Yan L, Guo J. Enhancing the immunogenicity of a DNA vaccine against Streptococcus mutans by attenuating the inhibition of endogenous miR-9. Vaccine. 2020;38(6):1424-30.
  • Bolhassani A, Yazdi SR. DNA immunization as an efficient strategy for vaccination. Avicenna J Med Biotechnol. 2009;1(2):71-88.
  • Mahase E. Covid-19: Oxford vaccine is up to 90% effective, interim analysis indicates. BMJ. 2020;371:m4564.
  • Luo S, Zhang P, Ma X, Wang Q, Lu J, Liu B, et al. A rapid strategy for constructing novel simian adenovirus vectors with high viral titer and expressing highly antigenic proteins applicable for vaccine development. Virus Res. 2019;268:1-10.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261-79.
  • Feldman RA, Fuhr R, Smolenov I, Ribeiro AM, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 2019;37(25):3326-34.
  • John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018;36(12):1689-99.
  • Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, et al. Modified mRNA vaccines protect against Zika virus infection. Cell. 2017;168(6):1114-25.e10.
  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109(36):14604-9.
  • Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol. 2020;92(5):495-500.
  • Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):254.
  • Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol. 2020;92(6):618-31.
  • who.int [Internet]. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 82. [Cited: 2021 Jan 31]. Available from: https://apps.who.int/iris/handle/10665/331780.
  • Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305-6.
  • Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 2020;11:298.
  • Cao Y, Zhu X, Hossen MN, Kakar P, Zhao Y, Chen X. Augmentation of vaccine-induced humoral and cellular immunity by a physical radiofrequency adjuvant. Nat Commun. 2018;9(1):3695.
  • Graham BS. Rapid COVID-19 vaccine development. Science. 2020;368(6494):945-6.
  • Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21(7):2657.
  • Lee J. marketwatch.com [Internet]. MarketWatch. These 23 companies are working on coronavirus treatments or vaccines - here’s where things stand. [Cited: 2020 Aug 8]. Available from: https://www.marketwatch.com/story/these-nine-companies-are-working-on-coronavirus-treatments-or-vaccines-heres-where-things-stand-2020-03-06.
  • Funk CD, Laferrière C, Ardakani A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Front Pharmacol. 2020;11:937.0937
  • Hamilton E. wisc.edu [Internet]. University of Wisconsin-Madison. UW-Madison, FluGen, Bharat Biotech to develop CoroFlu, a coronavirus vaccine. [Cited: 2020 Sep 27]. Available from: https://news.wisc. edu/uw-madison-flugen-bharat-biotech-to-develop-coroflu-a-coronavirus-vaccine/#:~:text=An%20 international%20collaboration%20of%20virologists,vaccine%20candidate%20known%20as%20M2SR.
  • van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586(7830):578-82.
  • Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589-93.
  • modernatx.com [Internet]. Moderna. Moderna announces positive interim phase 1 data for its mRNA vaccine (mRNA-1273) against novel coronavirus. [Cited: 2021 Jan 31]. Available from: https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-interim-phase-1-data-its-mrna-vaccine.
  • Mallapati S. Are COVID vaccination programmes working? Scientists seek first clues. Nature. 2021;589(7843):504-5.
  • Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci. 2018;19(11):3605.
  • clinicaltrials.gov [Internet]. ClinicalTrials.gov. Safety, tolerability and immunogenicity of INO-4800 for COVID-19 in healthy volunteers. [Cited: 2020 Nov 29]. Available from: https://clinicaltrials.gov/ct2/show/NCT04336410.
  • Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents. 2020;55(5):105955.
  • Garg P, Srivastava N, Srivastava P. An integrated in-silico approach to develop epitope-based peptide vaccine against SARS-CoV-2. Preprints. 2020. doi:10.20944/preprints202005.0401.v1
  • Khuroo MS, Khuroo M, Khuroo MS, Sofi AA, Khuroo NS. COVID-19 vaccines: A race against time in the middle of death and devastation! J Clin Exp Hepatol. 2020;10(6):610-21.
  • Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, et al. Seasonal coronavirus protective immunity is short-lasting. Nat Med. 2020;26(11):1691-3.
  • Koch T, Dahlke C, Fathi A, Kupke A, Krähling V, Okba NMA, et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infect Dis. 2020;20(7):827-38.
  • Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.
  • Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26(50):6338-43.
  • Petersen HE. theguardian.com [Internet]. The Guardian. India’s approval of Covid vaccines triggers mass immunisation drive. [Cited: 2021 Feb 8]. Available from: https://www.theguardian.com/world/ 2021/jan/03/indias-approval-of-twin-vaccines-triggers-mass-immunisation-drive.
  • Eyal N, Lipsitch M, Smith PG. Human challenge studies to accelerate coronavirus vaccine licensure. J Infect Dis. 2020;221(11):1752-6.
  • cnbc.com [Internet]. CNBC. South Africa halts AstraZeneca vaccinations after data shows little protection against mutation. [Cited: 2021 Feb 9]. Available from: https://www.cnbc.com/2021/02/07/ south-africa-halts-astrazeneca-vaccinations-.html.
  • Burton DR, Topol EJ. Variant-proof vaccines - invest now for the next pandemic. Nature. 2021;590(7846):386-8.
  • Klemeš JJ, Fan YV, Tan RR, Jiang P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew Sustain Energy Rev. 2020;127:109883.
  • Klemeš JJ, Fan YV, Jiang P. Plastics: friends or foes? The circularity and plastic waste footprint. Energ Source Part A. 2020;[Epub ahead of print]. doi:10.1080/15567036.2020.1801906
  • Fan YV, Jiang P, Hemzal M, Klemeš JJ. An update of COVID-19 influence on waste management. Sci Total Environ. 2021;754:142014.
  • Klemeš JJ, Fan YV, Jiang P. The energy and environmental footprints of COVID-19 fighting measures-PPE, disinfection, supply chains. Energy (Oxf). 2020;211:118701.
  • Klemeš JJ, Fan YV, Jiang P. COVID‐19 pandemic facilitating energy transition opportunities. Int J Energy Res. 2020;[Epub ahead of print]. doi:10.1002/er.6007
  • Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583(7818):830-3.
  • Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci USA. 2020;117(28):16587-95.

COVID-19 Aşısı Geliştirme Süreci Üzerine Bir Değerlendirme

Year 2021, , 1 - 23, 30.03.2021
https://doi.org/10.18678/dtfd.890089

Abstract

Koronavirüs hastalığı (coronavirus disease 2019, COVID-19) pandemisi, şiddetli akut solunum yolu sendromu koronavirüsü 2 (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)’nin neden olduğu ve henüz hastalığın olumsuz etkilerinin azalmasına yönelik yeterli kanıtın bulunmadığı küresel bir sorundur. Güvenilir bir aşı stratejisinin geliştirilmesiyle normal yaşama dönüleceğine dair genel bir fikir birliği oluşmuştur. Birçok ülke, COVID-19’a karşı etkin tedavi geliştirmek için klinik araştırma sürecini hızlandırmıştır. SARS-CoV-2 için 200'den fazla aday aşı test edilmeye başlanmıştır. Bu çalışmada, güncel COVID-19 aşı türleri genel olarak gözden geçirilecek, COVID-19 aşılarının teorik ve pratik zorlukları incelenecek ve aşı tasarımının başarılı olmasına yardımcı olacak olası stratejiler tartışılacaktır. Çalışmanın ilk bölümünde, anahtar kelimeler olarak “pandemiler, aşılar ve aşı türleri” kullanılarak literatürde yer alan makaleler incelenmiştir. Scopus veritabanında başlangıç anahtar kelimeleri ile toplam 63.538 sonuç (1.200 dergi, 16.875 kitap ve 12.871 web sayfası) incelenmiştir. Daha sonra "pandemi ve aşı türleri" gibi anahtar kelimeler ile daha ayrıntılı arama yapılmıştır (711 gazete ve 5.053 web sayfası). Bu çalışmada ayrıca, pandemilerle ilgili tarihsel arka plan, virolojik özellikleri, yapısı, kökeni ve fizyo-kimyasal özellikleri de incelenmiştir. İkinci bölümde, aşılama türleri ve stratejileri derinlemesine araştırılmıştır. Bu bölümde, SARS-CoV-2 ve SARS-COV-2/COVID-19 aşılarının teşhisi, virolojisi ve patogenezi üzerinde durulmuştur. COVID-19 aşılarının geliştirilmesi, planlama stratejileri, türleri, maliyeti ve güncel senaryoları ayrıntılı olarak açıklanmıştır. COVID-19 pandemisi var olduğu sürece küresel bir sorun olmaya devam edecektir. Aşılama, bu salgını hafifletmek ve kontrol altına almak için etkili ve ekonomik bir yol olarak görünmektedir. Bu hedefe ulaşmak için, etkin COVID-19 aşılarının seri üretimi en başarılı yol olacaktır.

References

  • Dyer O. Covid-19: Trump sought to buy vaccine developer exclusively for US, say German officials. BMJ. 2020;368:m1100.
  • Adegbola RA, Secka O, Lahai G, Lloyd-Evans N, Njie A, Usen S, et al. Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet. 2005;366(9480):144-50.
  • Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. 2020;[Epub ahead of print]. doi:10.1080/07391102.2020.1758788
  • Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;183(6):1735.
  • Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PloS One. 2012;7(4):e35421.
  • Agrawal AS, Tao X, Algaissi A, Garron T, Narayanan K, Peng BH, et al. Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother. 2016;12(9):2351-6.
  • Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med. 2009;15(1):34-41.
  • Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26(7):1470-7.
  • Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J. 2020;41(19):1798-1800.
  • Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-8.
  • Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382(24):2327-36.
  • Almedia J, Berry D, Cunningham C. Virology: Coronavirus. Nature. 1968;220(5168):650.
  • Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017;25(1):35-48.
  • Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020;133(9):1015-24.
  • Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-15.
  • Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-1207.
  • Lei J, Li J, Li X, Qi X. CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology. 2020;295(1):18.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe acute respiratory syndrome coronavirus 2- specific antibody responses in coronavirus disease 2019 patients. Emerg Infect Dis. 2020;26(7):1478-88.
  • Gupta P. A Review: Epidemiology, pathogenesis and prospect in developing vaccines for novel coronavirus (COVID-19). Indian J Tuberc. 2020;[Epub ahead of print]. doi:10.1016/j.ijtb.2020.09.021
  • who.int [Internet]. World Health Organization. Coronavirus disease (COVID-19): Similarities and differences with influenza. [Cited: 2021 Jan 31]. Available from: https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-similarities-and-differences-with-influenza.
  • Chakraborty R, Parvez S. COVID-19: An overview of the current pharmacological interventions, vaccines, and clinical trials. Biochem Pharmacol. 2020;180:114184.
  • Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-78.
  • Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-6.
  • Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-99.
  • Moreno L, Pearson AD. How can attrition rates be reduced in cancer drug discovery? Expert Opin Drug Discov. 2013;8(4):363-8.
  • Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-63.
  • Sonawane K, Barale SS, Dhanavade MJ, Waghmare SR, Nadaf NH, Kamble SA, et al. Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-Coronavirus-2. ChemRxiv. 2020. doi:10.26434/chemrxiv.12162360.v1
  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33.
  • Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.
  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3.
  • Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020;[Epub ahead of print]. doi: 10.1016/S0140-6736(20)31180-6
  • Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huitsing K, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 2020;97:396-403.
  • Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med. 2020;383(6):517-25.
  • Henao-Restrepo AM, Camacho A, Longini IM, Watson CH, Edmunds WJ, Egger M, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet. 2017;389(10068):505-18.
  • Brende B, Farrar J, Gashumba D, Moedas C, Mundel T, Shiozaki Y, et al. CEPI-a new global R&D organisation for epidemic preparedness and response. Lancet. 2017;389(10066):233-5.
  • Rauch S, Jasny E, Schmidt KE, Petsch B. New vaccine technologies to combat outbreak situations. Front Immunol. 2018;9:1963.
  • fda.gov [Internet]. Food and Drug Administration. Guidance for industry: General principles for the development of vaccines to protect against global infectious diseases. [Cited: 2021 Jan 31]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-principles-development-vaccines-protect-against-global-infectious-diseases.
  • Plotkin S, Robinson JM, Cunningham G, Iqbal R, Larsen S. The complexity and cost of vaccine manufacturing- an overview. Vaccine. 2017;35(33):4064-71.
  • Callaway E. The race for coronavirus vaccines: a graphical guide. Nature. 2020;580(7805):576-7.
  • Lee CYP, Lin RTP, Renia L, Ng LFP. Serological approaches for COVID-19: Epidemiologic perspective on surveillance and control. Front Immunol. 2020;11:879.
  • Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AV, Dorrell L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol. 2016;41:47-54.
  • Poland GA. Another coronavirus, another epidemic, another warning. Vaccine. 2020;38(10):v-vi.
  • Dömling A, Gao L. Chemistry and biology of SARS-CoV-2. Chem. 2020;6(6):1283-95.
  • Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8.
  • Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894-904.
  • Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the cardiologist: basic virology, epidemiology, cardiac manifestations, and potential therapeutic strategies. JACC: Basic Transl Sci. 2020;5(5):518-36.
  • Coulthard P. Dentistry and coronavirus (COVID-19)-moral decision-making. Br Dent J. 2020;228(7):503-5.
  • Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4):905-13.
  • Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, et al. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020;16(6):1232-38.
  • Shih HI, Wu CJ, Tu YF, Chi CY. Fighting COVID-19: a quick review of diagnoses, therapies, and vaccines. Biomed J. 2020;43(4):341-54.
  • Velavan TP, Meyer CG. The COVID‐19 epidemic. Trop Med Int Health. 2020;25(3):278-80.
  • Zhang C, Wu Z, Li JW, Zhao H, Wang GQ. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954.
  • Chau VQ, Oliveros E, Mahmood K, Singhvi A, Lala A, Moss N, et al. The imperfect cytokine storm: severe COVID-19 with ARDS in patient on durable LVAD Support. JACC Case Rep. 2020;2(9):1315-20.
  • Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020;9(1):382-5.
  • Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis. 2020;35:101647.
  • Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, et al. The potential chemical structure of anti‐SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol. 2020;92(6):693-7.
  • Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020;295(15):4773-9.
  • Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352-71.
  • Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. MAbs; 2020;12(1):1703531.
  • Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect. 2020;53(3):436-43.
  • Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing). 2020;6(10):1192-98.
  • McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res. 2020;157:104859.
  • Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev. 2020;19(5):102523.
  • Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55(5):105938.
  • Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020;55(4):105932.
  • Pandey A, Nikam AN, Shreya AB, Mutalik SP, Gopalan D, Kulkarni S, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci. 2020;256:117883.
  • Zhu Y, Li J, Pang Z. Recent insights for the emerging COVID-19: drug discovery, therapeutic options and vaccine development. Asian J Pharm Sci. 2021;16(1):4-23.
  • Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev. 2020;35:43-9.
  • Ojha R, Gupta N, Naik B, Singh S, Verma VK, Prusty D, et al. High throughput and comprehensive approach to develop multiepitope vaccine against minacious COVID-19. Eur J Pharm Sci. 2020;151:105375.
  • Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5:18.
  • Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine. 2020;55:102743.
  • Dashraath P, Wong JLJ, Lim MXK, Lim LM, Li S, Biswas A, et al. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am J Obstet Gynecol. 2020;222(6):521-31.
  • Ji H, Yan Y, Ding B, Guo W, Brunswick M, Niethammer A, et al. Novel decoy cellular vaccine strategy utilizing transgenic antigen-expressing cells as immune presenter and adjuvant in vaccine prototype against SARS-CoV-2 virus. Med Drug Discov. 2020;5:100026.
  • Modi P, Mihic M, Lewin A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist™ system. Diabetes Metab Res Rev. 2002;18(Suppl 1):S38-42.
  • Jia R, Yan L, Guo J. Enhancing the immunogenicity of a DNA vaccine against Streptococcus mutans by attenuating the inhibition of endogenous miR-9. Vaccine. 2020;38(6):1424-30.
  • Bolhassani A, Yazdi SR. DNA immunization as an efficient strategy for vaccination. Avicenna J Med Biotechnol. 2009;1(2):71-88.
  • Mahase E. Covid-19: Oxford vaccine is up to 90% effective, interim analysis indicates. BMJ. 2020;371:m4564.
  • Luo S, Zhang P, Ma X, Wang Q, Lu J, Liu B, et al. A rapid strategy for constructing novel simian adenovirus vectors with high viral titer and expressing highly antigenic proteins applicable for vaccine development. Virus Res. 2019;268:1-10.
  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261-79.
  • Feldman RA, Fuhr R, Smolenov I, Ribeiro AM, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 2019;37(25):3326-34.
  • John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018;36(12):1689-99.
  • Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, et al. Modified mRNA vaccines protect against Zika virus infection. Cell. 2017;168(6):1114-25.e10.
  • Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109(36):14604-9.
  • Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol. 2020;92(5):495-500.
  • Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):254.
  • Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol. 2020;92(6):618-31.
  • who.int [Internet]. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 82. [Cited: 2021 Jan 31]. Available from: https://apps.who.int/iris/handle/10665/331780.
  • Thanh Le T, Andreadakis Z, Kumar A, Gómez Román R, Tollefsen S, Saville M, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305-6.
  • Wang N, Shang J, Jiang S, Du L. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 2020;11:298.
  • Cao Y, Zhu X, Hossen MN, Kakar P, Zhao Y, Chen X. Augmentation of vaccine-induced humoral and cellular immunity by a physical radiofrequency adjuvant. Nat Commun. 2018;9(1):3695.
  • Graham BS. Rapid COVID-19 vaccine development. Science. 2020;368(6494):945-6.
  • Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21(7):2657.
  • Lee J. marketwatch.com [Internet]. MarketWatch. These 23 companies are working on coronavirus treatments or vaccines - here’s where things stand. [Cited: 2020 Aug 8]. Available from: https://www.marketwatch.com/story/these-nine-companies-are-working-on-coronavirus-treatments-or-vaccines-heres-where-things-stand-2020-03-06.
  • Funk CD, Laferrière C, Ardakani A. A snapshot of the global race for vaccines targeting SARS-CoV-2 and the COVID-19 pandemic. Front Pharmacol. 2020;11:937.0937
  • Hamilton E. wisc.edu [Internet]. University of Wisconsin-Madison. UW-Madison, FluGen, Bharat Biotech to develop CoroFlu, a coronavirus vaccine. [Cited: 2020 Sep 27]. Available from: https://news.wisc. edu/uw-madison-flugen-bharat-biotech-to-develop-coroflu-a-coronavirus-vaccine/#:~:text=An%20 international%20collaboration%20of%20virologists,vaccine%20candidate%20known%20as%20M2SR.
  • van Doremalen N, Lambe T, Spencer A, Belij-Rammerstorfer S, Purushotham JN, Port JR, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586(7830):578-82.
  • Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589-93.
  • modernatx.com [Internet]. Moderna. Moderna announces positive interim phase 1 data for its mRNA vaccine (mRNA-1273) against novel coronavirus. [Cited: 2021 Jan 31]. Available from: https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-interim-phase-1-data-its-mrna-vaccine.
  • Mallapati S. Are COVID vaccination programmes working? Scientists seek first clues. Nature. 2021;589(7843):504-5.
  • Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci. 2018;19(11):3605.
  • clinicaltrials.gov [Internet]. ClinicalTrials.gov. Safety, tolerability and immunogenicity of INO-4800 for COVID-19 in healthy volunteers. [Cited: 2020 Nov 29]. Available from: https://clinicaltrials.gov/ct2/show/NCT04336410.
  • Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents. 2020;55(5):105955.
  • Garg P, Srivastava N, Srivastava P. An integrated in-silico approach to develop epitope-based peptide vaccine against SARS-CoV-2. Preprints. 2020. doi:10.20944/preprints202005.0401.v1
  • Khuroo MS, Khuroo M, Khuroo MS, Sofi AA, Khuroo NS. COVID-19 vaccines: A race against time in the middle of death and devastation! J Clin Exp Hepatol. 2020;10(6):610-21.
  • Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, et al. Seasonal coronavirus protective immunity is short-lasting. Nat Med. 2020;26(11):1691-3.
  • Koch T, Dahlke C, Fathi A, Kupke A, Krähling V, Okba NMA, et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infect Dis. 2020;20(7):827-38.
  • Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.
  • Martin JE, Louder MK, Holman LA, Gordon IJ, Enama ME, Larkin BD, et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26(50):6338-43.
  • Petersen HE. theguardian.com [Internet]. The Guardian. India’s approval of Covid vaccines triggers mass immunisation drive. [Cited: 2021 Feb 8]. Available from: https://www.theguardian.com/world/ 2021/jan/03/indias-approval-of-twin-vaccines-triggers-mass-immunisation-drive.
  • Eyal N, Lipsitch M, Smith PG. Human challenge studies to accelerate coronavirus vaccine licensure. J Infect Dis. 2020;221(11):1752-6.
  • cnbc.com [Internet]. CNBC. South Africa halts AstraZeneca vaccinations after data shows little protection against mutation. [Cited: 2021 Feb 9]. Available from: https://www.cnbc.com/2021/02/07/ south-africa-halts-astrazeneca-vaccinations-.html.
  • Burton DR, Topol EJ. Variant-proof vaccines - invest now for the next pandemic. Nature. 2021;590(7846):386-8.
  • Klemeš JJ, Fan YV, Tan RR, Jiang P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew Sustain Energy Rev. 2020;127:109883.
  • Klemeš JJ, Fan YV, Jiang P. Plastics: friends or foes? The circularity and plastic waste footprint. Energ Source Part A. 2020;[Epub ahead of print]. doi:10.1080/15567036.2020.1801906
  • Fan YV, Jiang P, Hemzal M, Klemeš JJ. An update of COVID-19 influence on waste management. Sci Total Environ. 2021;754:142014.
  • Klemeš JJ, Fan YV, Jiang P. The energy and environmental footprints of COVID-19 fighting measures-PPE, disinfection, supply chains. Energy (Oxf). 2020;211:118701.
  • Klemeš JJ, Fan YV, Jiang P. COVID‐19 pandemic facilitating energy transition opportunities. Int J Energy Res. 2020;[Epub ahead of print]. doi:10.1002/er.6007
  • Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;583(7818):830-3.
  • Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci USA. 2020;117(28):16587-95.
There are 120 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Invited Review
Authors

Sami Ullah This is me 0000-0002-9669-5737

Abdullah Ghodran Al-sehemı This is me 0000-0002-6793-3038

Jiří Jaromír Klemeš This is me 0000-0002-7450-7029

Sanam Saqıb This is me 0000-0002-4026-660X

Sahibzada Muhammad Azib Gondal This is me 0000-0002-4065-5066

Sidra Saqıb This is me 0000-0003-2325-2393

Akasha Arshad This is me 0000-0001-9864-6034

Hira Saqıb This is me 0000-0002-7938-3555

Ahmad Mukhtar This is me 0000-0003-3367-5963

Muhammad Ibrahım This is me 0000-0003-4624-1849

Saira Asıf This is me 0000-0001-8185-0653

Awais Bokharı This is me 0000-0002-0748-6336

Publication Date March 30, 2021
Submission Date January 15, 2021
Published in Issue Year 2021

Cite

APA Ullah, S., Al-sehemı, A. G., Klemeš, J. J., Saqıb, S., et al. (2021). A Review of the Progress of COVID-19 Vaccine Development. Duzce Medical Journal, 23(Special Issue), 1-23. https://doi.org/10.18678/dtfd.890089
AMA Ullah S, Al-sehemı AG, Klemeš JJ, Saqıb S, Gondal SMA, Saqıb S, Arshad A, Saqıb H, Mukhtar A, Ibrahım M, Asıf S, Bokharı A. A Review of the Progress of COVID-19 Vaccine Development. Duzce Med J. March 2021;23(Special Issue):1-23. doi:10.18678/dtfd.890089
Chicago Ullah, Sami, Abdullah Ghodran Al-sehemı, Jiří Jaromír Klemeš, Sanam Saqıb, Sahibzada Muhammad Azib Gondal, Sidra Saqıb, Akasha Arshad, Hira Saqıb, Ahmad Mukhtar, Muhammad Ibrahım, Saira Asıf, and Awais Bokharı. “A Review of the Progress of COVID-19 Vaccine Development”. Duzce Medical Journal 23, no. Special Issue (March 2021): 1-23. https://doi.org/10.18678/dtfd.890089.
EndNote Ullah S, Al-sehemı AG, Klemeš JJ, Saqıb S, Gondal SMA, Saqıb S, Arshad A, Saqıb H, Mukhtar A, Ibrahım M, Asıf S, Bokharı A (March 1, 2021) A Review of the Progress of COVID-19 Vaccine Development. Duzce Medical Journal 23 Special Issue 1–23.
IEEE S. Ullah, “A Review of the Progress of COVID-19 Vaccine Development”, Duzce Med J, vol. 23, no. Special Issue, pp. 1–23, 2021, doi: 10.18678/dtfd.890089.
ISNAD Ullah, Sami et al. “A Review of the Progress of COVID-19 Vaccine Development”. Duzce Medical Journal 23/Special Issue (March 2021), 1-23. https://doi.org/10.18678/dtfd.890089.
JAMA Ullah S, Al-sehemı AG, Klemeš JJ, Saqıb S, Gondal SMA, Saqıb S, Arshad A, Saqıb H, Mukhtar A, Ibrahım M, Asıf S, Bokharı A. A Review of the Progress of COVID-19 Vaccine Development. Duzce Med J. 2021;23:1–23.
MLA Ullah, Sami et al. “A Review of the Progress of COVID-19 Vaccine Development”. Duzce Medical Journal, vol. 23, no. Special Issue, 2021, pp. 1-23, doi:10.18678/dtfd.890089.
Vancouver Ullah S, Al-sehemı AG, Klemeš JJ, Saqıb S, Gondal SMA, Saqıb S, Arshad A, Saqıb H, Mukhtar A, Ibrahım M, Asıf S, Bokharı A. A Review of the Progress of COVID-19 Vaccine Development. Duzce Med J. 2021;23(Special Issue):1-23.