BibTex RIS Cite

The Known About Apoptosis (Review of the Literature)

Year 2012, Volume: 14 Issue: 2, 87 - 101, 01.07.2012

Abstract

It is necessery to be known that the mechanism of apoptosis which have a role part fromorganogenesis to different diseases is the most attract attention and performed most study on it.In this review, we are presenting the known about apoptosis to readers

References

  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-57, 1972.
  • Paweletz N. Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2:72–5, 2001.
  • Susan Elmore. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 35(4):495-516, 2007.
  • Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 59:1701-1706, 1999.
  • Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, Orlandini SZ. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182:41–9, 2000.
  • Sperandio S, de Belle I, Bredesen DE. An alternative, non- apoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–81, 2000.
  • Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy 1:66- 74, 2005.
  • Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 41:367–401, 2001.
  • Kerr JFR, Harmon BV. Definition and incidence of apoptosis: an historical perspective. In: Tomei LD, Cope FO, eds. Apoptosis: the molecular basis of cell death, Vol. 3. New York: Cold Spring Harbor Laboratory Press, 5-29, 1991.
  • Utz PJ, Anderson P. Posttranslational protein modifications, apoptosis and the bypass of tolerance to autoantigens. Arthritis Rheum 41:1152-1160,1998.
  • Itoh N, Nagata S. Anovel protein domain required for apoptosis: mutational analysis of human Fas antigen. J Biol Chem 268:10932-10937, 1993.
  • Me Cubrey JA, May WS, Duronio V, Mufson A. Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 14:9-21, 2000.
  • Cross TG, Scheel-Toellner D, Heriquez NV, Deacon E, Salmon M, Lord JM. Serine/Threonine protein kinases and apoptosis. Exp Cell Res 256:34-41, 2000.
  • Kumar S. ICE-like proteases in apoptosis. Trend Biochem Sci 20:198-202, 1995.
  • Salveson GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 91:443-446, 1997.
  • Wallach D, Boldin M, Varfolomeev E, Beyaert R, Vandenabeele P, Fiers W.Cell death induction by receptors of the TNF family: towards a molecular understanding. FEBS Lett 410:96-106, 1997.
  • Muzio M, Salvesen GS, Dixit VM. FLICE induced apoptosis in a cell free system. J Biol Chem 272:2952-2956, 1997.
  • Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274:22532-22538
  • Cain K, Bratton SB, Langlais C, Walker G, Brown DG, Sun XM, and Cohen G. MApaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1. 4- Mda apoptosome complexes. J Biol Chem 275:6067-6070, 2000.
  • Mountz JD, Zhou T. Apoptosis and Autoimmunity. In: Koopman WJ ed. A Textbook of Rheumatology: Arthritis and Allied Conditions. Lippincott Williams&Wikins, 2001.
  • Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–88, 2002.
  • Martinvalet D, Zhu P, Lieberman J. Granzim A induces caspase- independent mitochondrial damage, a required first step for apoptosis. Immunity 22:355–70, 2005.
  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, and Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847-849, 1993.
  • Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 281:1305-8, 1998.
  • Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 272:32401–10, 1997.
  • Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162, 1999.
  • Peter ME, Krammer PH. Mechanisms of CD95 (APO-1/Fas)- mediated apoptosis. Curr Opin Immunol 10:545–51, 1998.
  • Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial- dependent 20:2122–33, 2001. pathways. Oncogene
  • Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and Nfkappa B activation. Cell 81:495–504, 1995.
  • Wajant H. The Fas signaling pathway: more than a paradigm. Science 296:1635–6, 2002.
  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME. Cytotoxicitydependent APO-1 (Fas/CD95)- associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 14:5579–88, 1995.
  • Kataoka T, Schroter M, Hahne M, Schneider P, Irmler M, Thome M, Froelich CJ, Tschopp J. FLIP prevents apoptosis induced by death receptors but not by perforin/granzim B, chemotherapeutic drugs, and gamma irradiation. J Immunol 161:3936–42, 1998.
  • Budd RC. Death receptors couple to both cell proliferation and apoptosis. J Clin Invest 109:437-42, 2002.
  • Trapani JA, Smyth MJ. Functional significance of the perforin/granzim cell death pathway. Nat Rev Immunol 2:735–47, 2002.
  • Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzim Aactivated DNase during CTL- mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–72, 2003.
  • Lieberman J, Fan Z. Nuclear war: the granzim A-bomb. Curr Opin Immunol 15:553–9, 2003.
  • Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–74, 2004.
  • Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42, 2000.
  • Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo J 23:2134–45, 2004.
  • Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64:7183– 90, 2004.
  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga- Pflucker JC, Kroemer G, Penninger JM. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–54, 2001.
  • Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501, 1998.
  • Esposti MD. The roles of Bid. Apoptosis 7:433–40, 2002.
  • Chau BN, Cheng EH, Kerr DA, Hardwick JM. Aven, a novel inhibitor of caspase activation, binds BclxL and Apaf-1. Mol Cell 6:31–40, 2000.
  • Liu FT, Newland AC, Jia L. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia. Biochem Biophys Res Commun 310:956–62, 2003.
  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53- induced apoptosis. Science 288:1053–8, 2000.
  • Meyer N, Kim SS, Penn LZ. The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol 16:275–87, 2006.
  • Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–6, 2001.
  • Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–9, 1998.
  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–8, 1997.
  • Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 272:26159–65, 1997.
  • Eröz R, Akbulut M, Yılmaz S, Ayvaz A, Sadykhov S. Age dependent DNase activity in larvae, pupae and adult stages of Mediterranean Flour Moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) Türk. entomol. derg./ Turkısh Journal of Entomology, 34 (1), 3-12, 2010.
  • Renehan AG, Booth C, Potten CS. What is apoptosis, and why is it important? Bmj 322:1536–8, 2001.
  • Nijhawan D, Honarpour N, Wang X. Apoptosis in neural development and disease. Annu Rev Neurosci 23:73–87, 2000.
  • Opferman JT, Korsmeyer SJ. Apoptosis in the development and maintenance of the immune system. Nat Immunol 4:410– 5, 2003.
  • Greenhalgh DG. The role of apoptosis inwound healing. Int J Biochem Cell Biol 30:1019–30, 1998.
  • Osborne BA. Apoptosis and the maintenance of homoeostasis in the immune system. Curr Opin Immunol 8:245–54, 1996.
  • Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129:2799–801, 1991.
  • Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and - dependent pathways. Development 122:181–93, 1996.
  • Harman D. Role of free radicals in aging and disease. Ann N Y Acad Sci 673:126–41, 1992.
  • Ozawa T. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta 1271:177–89, 1995.
  • King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol 60:601–17, 1998.
  • Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013– 26, 1994.
  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–805, 1994.
  • Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–9, 2001.
  • Wang XW, Harris CC. p53 tumor-suppressor gene: clues to molecular carcinogenesis. J Cell Physiol 173:247–55, 1997.
  • Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475– 81, 2002.
  • Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome—a molecular and clinical review. Br J Cancer 76:1–14, 1997.
  • Gu J, Kawai H, Wiederschain D, Yuan ZM. Mechanism of functional inactivation of a Li-Fraumeni syndrome p53 that has a mutation outside of the DNA-binding domain. Cancer Res 61:1741– 6, 2001.
  • Ozen OA, Kus MA, Kus I, Alkoc OA, Songur A. Protective effects of melatonin against formaldehyde-induced oxidative damage and apoptosis in rat testes: An immunohistochemical and biochemical study. Systems Biology in Reproductive Medicine, 54:169-176, 2008.
  • Kitagawa R, Kastan MB. The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol LXX 70:99-109,2005.
  • Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 3:889–900, 2004.
  • Worth A, Thrasher AJ, Gaspar HB. Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype. Br J Haematol 133:124–40, 2006.
  • Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268:429–31, 1995.
  • Ethell DW, Buhler LA. Fas ligand-mediated apoptosis in degenerative disorders of the brain. J Clin Immunol 23:439– 46, 2003.
  • Kumar V, Abbas AK, Fausto N. Cellular adaptations, cell injury, and cell death. In Kumar V, Abbas AK, Fausto N, editors. Pathologic basis of disease. Philadelphia, Pennsylvania: Elsevier Saunders, 3-46, 2005.
  • Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306, 1980.
  • Farber JL, El Mofty SK. The biochemical pathology of liver cell necrosis. Am J Pathol 81:237–250, 1975.
  • Yuan J. Evolutionary conservation of a genetic pathway of programmed cell death. J Cell Biochem 60:4–11, 1996.
  • Schittny JC, Djonov V, Fine A, Burri PH. Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 18:786–793, 1998.
  • Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15, 1995.
  • Trump BF, Berezesky IK, Chang SH, Phelps PC. The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25:82–8, 1997.
  • Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 407:784–8, 2000.
  • Kurosaka K, Takahashi M, Watanabe N, Kobayashi Y. Silent cleanup of very early apoptotic cells by macrophages. J Immunol 171:4672–9, 2003.
  • Zeiss CJ. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 40:481–95, 2003.
  • Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–30, 1999.
  • Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–6, 1998.
  • Hoeppner DJ, Hengartner MO, Schnabel R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412:202–6, 2001.
  • Diez-Roux G, Lang RA. Macrophages induce apoptosis in normal cells in vivo. Development 124:3633–8, 1997.
  • Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74:453–62, 1993.
  • Little GH, Flores A. Inhibition of programmed cell death by catalase and phenylalanine methyl ester. Comp Biochem Physiol Comp Physiol 105:79–83, 1993.
  • Geske FJ, Lieberman R, Strange R, Gerschenson LE. Early stages of p53-induced apoptosis are reversible. Cell Death Fiffer 8:182-191, 2001.
  • Hengartner MO. The biochemistry of apoptosis. Nature 407:770–776, 2000.
  • Cohen GM. Caspases: the executioners of apoptosis. Biochem J 326(1):1–16, 1997.
  • Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds 4:138–44, 2005.
  • Hu S, Snipas SJ, Vincenz C, Salvesen G, Dixit VM. Caspase- 14 is a novel developmentally regulated protease. J Biol Chem 273:29648–53, 1998.
  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmicreticulum- specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98– 103, 2000.
  • Kang SJ, Wang S, Kuida K, Yuan J. Distinct downstream pathways of caspase-11 in regulating apoptosis and cytokine maturation during septic shock response. Cell Death Differ 9:1115–25, 2002.
  • Bortner CD, Oldenburg NB, Cidlowski JA. The role of DNA fragmentation in apoptosis. Trends Cell Biol 5:21–6, 1995.
  • Bratton DL, Fadok VA, Richter DA, Jenai MK, Guthrie LA, Henson PM. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272:26159-26165, 1997.
  • Vermeulen K, Bockstaele DRV, Berneman ZN. Apoptosis: mechanisms and relevance in cancer Ann Hematol 84: 627– 639, 2005.
  • Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 281:1312–1316, 1998.
  • Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424, 1999.
  • Duriez PJ, Shah GM. Cleavage of poly(ADP- ribose)polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337–349, 1997.
  • Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16443–16446, 1996.
  • Mashima T, Naito M, Fujita N, Noguchi K, Tsuruo T. Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16–induced U937 apoptosis. Biochem Biophys Res Commun 217:1185–1192, 1995.
  • Song Q, Lees-Miller SP, Kumar S, Zhang Z, Chan DW, Smith GC, Jackson SP, Alnemri ES, Litwack G, Khanna KK, Lavin MF. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J 15:3238– 3246, 1996.
  • Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 273:7141– 7147, 1998.
  • Barkett M, Xue D, Horvitz HR, Gilmore TD. Phosphorylation of IkappaB-alpha inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem 272:29419–29422, 1997.
  • Tan X, Martin SJ, Green DR, Wang JYJ. Degradation of retinoblastoma protein in tumor necrosis factor- and CD95- induced cell death. J Biol Chem 272:9613–9616, 1997.
  • Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774, 1992.
  • Celebi A. Meme kanserli hastalarda CASP8 ve CASP9 gen polimorfizmlerinin araştırılması. Düzce-2011.
  • McCarthy NJ, Whyte MK, Gilbert CS, Evan GI. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136:215–227, 1997.
  • Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin PR, Chapman KT. Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33:3934–3940, 1994.
  • Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P. Caspase inhibition causes hyperacute tumor necrosis factor- induced shock via oxidative stress and phospholipase A2. Nat Immunol 4:387–393, 2003.
  • Mathiasen IS, Jaattela M. Triggering caspase-independent cell death to combat cancer. Trends Mol Med 8:212–220, 2002.
  • Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 305:626–629, 2004.
  • Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598, 2001.
  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J. Viral FLICE- inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521, 1997.
  • Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S, Wang Y, Fernandes AT, Croce CM, Litwack G, Tomaselli KJ, Armstrong RC, Alnemri ES. FLAME-1, a novel FADD like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 272:18542–18545, 1997.
  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition of death receptor signals by cellular FLIP [see comments]. Nature 388:190– 195, 1997.
  • Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–6, 2000.
  • Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev 13:239–52, 1999.
  • Uren AG, Coulson EJ, Vaux DL. Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeast. Trends Biochem Sci 23:159–162, 1998.
  • LaCasse E, Baird S, Korneluk R, MacKenzie A. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17:3247–3259, 1998.
  • Ambrosini G, Adida C, Altieri DC. A novel antiapoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921, 1997.
  • Van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–26, 2002.
  • Livingston DJ. In vitro and in vivo studies of ICE inhibitors. J Cell Biochem 64:19–26, 1997.
  • Le GT, Abbenante G. Inhibitors of TACE and Caspase-1 as anti-inflammatory drugs. Curr Med Chem 12:2963–77, 2005.
  • Pathan N, Marusawa H, Krajewska M, Matsuzawa S, Kim H, Okada K, Torii S, Kitada S, Krajewski S, Welsh K, Pio F,Godzik A, Reed JC. TUCAN, an antiapoptotic caspaseassociated recruitment domain family protein overexpressed in cancer. J Biol Chem 276:32220–32229, 2001.
  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475, 2000.
  • Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, Tobar A, Vidne BA. Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 284:H2351–9, 2003.
  • Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, Church DJ, Korsmeyer SJ, Martinou JC, Antonsson B. Bax channel inhibitors prevent mitochondrion- mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem 280:42960-70, 2005.
  • Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 266:699–717, 1999.
  • Joaquin AM, Gollapudi S. Functional decline in aging and disease: a role for apoptosis. J Am Geriatr Soc 49:1234–1240, 2001.
  • Fanidi A, Harrington EA, Evan GI. Cooperative interaction between c-myc and bcl-2 proto-oncogene. Nature 359:554- 556, 1992.
  • Raff MC. Social controls on cell survival and cell death. Nature 356:397-400, 1992.
  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348, 2001.
  • Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, Aime SC, Bodrug S, Kitada S, Hanada M. BCL- 2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 60:23–32, 1996.
  • Tsujimoto Y, Yunis J, Onorato SL, Erikson J, Nowell PC, Croce CM. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406, 1984.
  • Puthier D, Derenne S, Barille S, Moreau P, Harousseau JL, Bataille R, Amiot M. Mcl-1 and Bcl-XL are co-regulated by IL-6 in human myeloma cells. J Cell Biol 97:1235-1239, 1999.
  • Michels J, Johnson PW, Packham G. Mcl-1. Int J Biochem Cell Biol 37:267–271, 2005.
  • Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969, 1997.
  • Brimmell M, Mendiola R, Mangion J, Packham G. BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene 16:1803– 1812, 1998.
  • Zamzami N, Brenner C, Marzo I, Susin SA, Kroemer G. Subcellular and submitochondrial mode of action of Bcl-2- like oncoproteins. Oncogene 16:2265–2282, 1998.
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293– 299, 1995.
  • Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW. Apaf-1 and caspase-9 in p53- dependent apoptosis and tumor inhibition. Science 284:156–159, 1999.
  • Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E et al. Wild-type human p53 and a temperaturesensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15:3032–3040, 1995.
  • Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS, Fornace AJ Jr, el Deiry WS. p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 58:1593–1598, 1998.
  • Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 88:323–331, 1997.
  • Schwartz D, Rotter V. p53-dependent cell cycle control: response to genotoxic stress. Semin Cancer Biol 8:325–336, 1998.
  • Muller M, Strand S, Hug H, Heinemann EM, Walczak H,Hofmann WJ, Stremmel W, Krammer PH, Galle PR. Drug- induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413, 1997.
  • Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem 274:36031–36034, 1999.
  • Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancerprone family with Li-Fraumeni syndrome [see comments]. Nature 348:747–749, 1990.
  • Sherr CJ, Weber JD. The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99, 2000.
  • Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254, 2001.
  • Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–946
  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535, 2000.
  • Soung YH, Lee JW, Kim SY, Jang J, Park YG, Park WS, Nam SW, Lee JY, Yoo NJ, Lee SH. CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res 65:815–821, 2005.
  • Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584, 1998.
  • Li F. Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92:212–216, 2005.
  • Schmitt CA, Lowe SW. Apoptosis and therapy. J Pathol 187:127–137, 1999.
  • Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81:3091–3096, 1993.
  • Simonian PL, Grillot DA, Nunez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 90:1208–1216, 1997.
  • Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86:1903–1910, 1995.
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 6:513–519, 2000.
  • Friesen C, Herr I, Krammer PH, Debatin KM. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug- induced apoptosis in leukemia cells. Nat Med 2:574–577, 1996.
  • Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 57:3823–3829, 1997.
  • Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, Rotoli B, Young NS, Maciejewski JP. Involvement of Fasmediated apoptosis in the inhibitory effects of interferon- alpha in chronic myelogenous leukemia. Blood 89:957–964, 1997.
  • Min YH, Lee S, Lee JW, Chong SY, Hahn JS, Ko YW.Expression of FAS antigen in acute myeloid leukemia is associated with therapeutic response to chemotherapy. Br J Haematol 93:928–930, 1996.
  • Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, Offringa R. Blockade of the granzim B/perforin pathway through overexpression of the serine protease inhibitor PI- 9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA 98:11515–11520, 2001.
  • Zhang H, Levitt ML. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines. Lung Cancer 23:115–127, 1999.
  • Keith FJ, Bradbury DA, Zhu YM, Russell NH. Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 9:131–138, 1995.
  • Banerjee D. Genasense (Genta Inc). Curr Opin Investig Drugs 2:574–580, 2001.
  • Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC. Reversal of chemoresistance of lymphoma cells by antisensemediated reduction of bcl-2 gene expression. Antisense Res Dev 4:71–79, 1994.
  • Rudin CM, Kozloff M, Hoffman PC, Edelman MJ, Karnauskas R, Tomek R, Szeto L, Vokes EE. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 22:1110–1117, 2004.
  • Raje N, Kumar S, Hideshima T, Roccaro A, Ishitsuka K, Yasui H, Shiraishi N, Chauhan D, Munshi NC, Green SR, Anderson KC. Seliciclib (CYC202 or R-Roscovitine), a small molecule cyclin dependent kinase inhibitor, mediates activity via downregulation of Mcl-1 in multiple myeloma. Blood prepublished online Apr 12 183. Koty PP, 2005.
  • Tai YT, Strobel T, Kufe D, Cannistra SA. In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the Bax gene. Cancer Res 59:2121–2126, 1999.
  • Grad JM, Cepero E, Boise LH. Mitochondria as targets for established and novel anti-cancer agents. Drug Resist Updat 4:85–91, 2001.
  • Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy.J Natl Cancer Inst 92:1042–1053, 2000.
  • Lane PD, Lain S. Therapeutic exploitation of the p53 pathway. Trends Mol Med 8:38–42, 2002.
  • Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310, 2002.
  • Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947, 1999.
  • Fahy BN, Schlieman MG, Mortenson MM, Virudachalam S, Bold RJ. Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol 56:46–54, 2005.
  • Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS. The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4:443–449, 2005.
  • Blagosklonny MV. Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16:455– 462, 2002.
  • Schmitt CA, Lowe SW. Apoptosis is critical for drug response in vivo. Drug Resist Updat 4:132–134, 2001.

Apoptozis Hakkında Bilinenler (Literatür Taraması)

Year 2012, Volume: 14 Issue: 2, 87 - 101, 01.07.2012

Abstract

Canlı organizmalarda organogenezisten, çeşitli hastalıklara kadar birçok mekanizmada rol alanapoptozis, en çok dikkat çeken ve üzerinde çok sayıda araştırmaların yapıldığı bilinmesi gerekenönemli bir mekanizmadır. Biz bu derlemede apoptozis ile ilgili bilinenleri okuyuculara sunmayaçalıştık

References

  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-57, 1972.
  • Paweletz N. Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2:72–5, 2001.
  • Susan Elmore. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 35(4):495-516, 2007.
  • Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 59:1701-1706, 1999.
  • Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, Orlandini SZ. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol 182:41–9, 2000.
  • Sperandio S, de Belle I, Bredesen DE. An alternative, non- apoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–81, 2000.
  • Debnath J, Baehrecke EH, Kroemer G. Does autophagy contribute to cell death? Autophagy 1:66- 74, 2005.
  • Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol 41:367–401, 2001.
  • Kerr JFR, Harmon BV. Definition and incidence of apoptosis: an historical perspective. In: Tomei LD, Cope FO, eds. Apoptosis: the molecular basis of cell death, Vol. 3. New York: Cold Spring Harbor Laboratory Press, 5-29, 1991.
  • Utz PJ, Anderson P. Posttranslational protein modifications, apoptosis and the bypass of tolerance to autoantigens. Arthritis Rheum 41:1152-1160,1998.
  • Itoh N, Nagata S. Anovel protein domain required for apoptosis: mutational analysis of human Fas antigen. J Biol Chem 268:10932-10937, 1993.
  • Me Cubrey JA, May WS, Duronio V, Mufson A. Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 14:9-21, 2000.
  • Cross TG, Scheel-Toellner D, Heriquez NV, Deacon E, Salmon M, Lord JM. Serine/Threonine protein kinases and apoptosis. Exp Cell Res 256:34-41, 2000.
  • Kumar S. ICE-like proteases in apoptosis. Trend Biochem Sci 20:198-202, 1995.
  • Salveson GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 91:443-446, 1997.
  • Wallach D, Boldin M, Varfolomeev E, Beyaert R, Vandenabeele P, Fiers W.Cell death induction by receptors of the TNF family: towards a molecular understanding. FEBS Lett 410:96-106, 1997.
  • Muzio M, Salvesen GS, Dixit VM. FLICE induced apoptosis in a cell free system. J Biol Chem 272:2952-2956, 1997.
  • Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274:22532-22538
  • Cain K, Bratton SB, Langlais C, Walker G, Brown DG, Sun XM, and Cohen G. MApaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1. 4- Mda apoptosome complexes. J Biol Chem 275:6067-6070, 2000.
  • Mountz JD, Zhou T. Apoptosis and Autoimmunity. In: Koopman WJ ed. A Textbook of Rheumatology: Arthritis and Allied Conditions. Lippincott Williams&Wikins, 2001.
  • Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–88, 2002.
  • Martinvalet D, Zhu P, Lieberman J. Granzim A induces caspase- independent mitochondrial damage, a required first step for apoptosis. Immunity 22:355–70, 2005.
  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, and Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847-849, 1993.
  • Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 281:1305-8, 1998.
  • Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 272:32401–10, 1997.
  • Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162, 1999.
  • Peter ME, Krammer PH. Mechanisms of CD95 (APO-1/Fas)- mediated apoptosis. Curr Opin Immunol 10:545–51, 1998.
  • Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial- dependent 20:2122–33, 2001. pathways. Oncogene
  • Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and Nfkappa B activation. Cell 81:495–504, 1995.
  • Wajant H. The Fas signaling pathway: more than a paradigm. Science 296:1635–6, 2002.
  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME. Cytotoxicitydependent APO-1 (Fas/CD95)- associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 14:5579–88, 1995.
  • Kataoka T, Schroter M, Hahne M, Schneider P, Irmler M, Thome M, Froelich CJ, Tschopp J. FLIP prevents apoptosis induced by death receptors but not by perforin/granzim B, chemotherapeutic drugs, and gamma irradiation. J Immunol 161:3936–42, 1998.
  • Budd RC. Death receptors couple to both cell proliferation and apoptosis. J Clin Invest 109:437-42, 2002.
  • Trapani JA, Smyth MJ. Functional significance of the perforin/granzim cell death pathway. Nat Rev Immunol 2:735–47, 2002.
  • Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzim Aactivated DNase during CTL- mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–72, 2003.
  • Lieberman J, Fan Z. Nuclear war: the granzim A-bomb. Curr Opin Immunol 15:553–9, 2003.
  • Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–74, 2004.
  • Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42, 2000.
  • Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo J 23:2134–45, 2004.
  • Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64:7183– 90, 2004.
  • Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga- Pflucker JC, Kroemer G, Penninger JM. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549–54, 2001.
  • Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501, 1998.
  • Esposti MD. The roles of Bid. Apoptosis 7:433–40, 2002.
  • Chau BN, Cheng EH, Kerr DA, Hardwick JM. Aven, a novel inhibitor of caspase activation, binds BclxL and Apaf-1. Mol Cell 6:31–40, 2000.
  • Liu FT, Newland AC, Jia L. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia. Biochem Biophys Res Commun 310:956–62, 2003.
  • Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53- induced apoptosis. Science 288:1053–8, 2000.
  • Meyer N, Kim SS, Penn LZ. The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol 16:275–87, 2006.
  • Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–6, 2001.
  • Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–9, 1998.
  • Kothakota S, Azuma T, Reinhard C, Klippel A, Tang J, Chu K, McGarry TJ, Kirschner MW, Koths K, Kwiatkowski DJ, Williams LT. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–8, 1997.
  • Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 272:26159–65, 1997.
  • Eröz R, Akbulut M, Yılmaz S, Ayvaz A, Sadykhov S. Age dependent DNase activity in larvae, pupae and adult stages of Mediterranean Flour Moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) Türk. entomol. derg./ Turkısh Journal of Entomology, 34 (1), 3-12, 2010.
  • Renehan AG, Booth C, Potten CS. What is apoptosis, and why is it important? Bmj 322:1536–8, 2001.
  • Nijhawan D, Honarpour N, Wang X. Apoptosis in neural development and disease. Annu Rev Neurosci 23:73–87, 2000.
  • Opferman JT, Korsmeyer SJ. Apoptosis in the development and maintenance of the immune system. Nat Immunol 4:410– 5, 2003.
  • Greenhalgh DG. The role of apoptosis inwound healing. Int J Biochem Cell Biol 30:1019–30, 1998.
  • Osborne BA. Apoptosis and the maintenance of homoeostasis in the immune system. Curr Opin Immunol 8:245–54, 1996.
  • Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129:2799–801, 1991.
  • Lund LR, Romer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, Dano K, Werb Z. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and - dependent pathways. Development 122:181–93, 1996.
  • Harman D. Role of free radicals in aging and disease. Ann N Y Acad Sci 673:126–41, 1992.
  • Ozawa T. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta 1271:177–89, 1995.
  • King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol 60:601–17, 1998.
  • Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013– 26, 1994.
  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–805, 1994.
  • Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–9, 2001.
  • Wang XW, Harris CC. p53 tumor-suppressor gene: clues to molecular carcinogenesis. J Cell Physiol 173:247–55, 1997.
  • Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475– 81, 2002.
  • Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome—a molecular and clinical review. Br J Cancer 76:1–14, 1997.
  • Gu J, Kawai H, Wiederschain D, Yuan ZM. Mechanism of functional inactivation of a Li-Fraumeni syndrome p53 that has a mutation outside of the DNA-binding domain. Cancer Res 61:1741– 6, 2001.
  • Ozen OA, Kus MA, Kus I, Alkoc OA, Songur A. Protective effects of melatonin against formaldehyde-induced oxidative damage and apoptosis in rat testes: An immunohistochemical and biochemical study. Systems Biology in Reproductive Medicine, 54:169-176, 2008.
  • Kitagawa R, Kastan MB. The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol LXX 70:99-109,2005.
  • Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 3:889–900, 2004.
  • Worth A, Thrasher AJ, Gaspar HB. Autoimmune lymphoproliferative syndrome: molecular basis of disease and clinical phenotype. Br J Haematol 133:124–40, 2006.
  • Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268:429–31, 1995.
  • Ethell DW, Buhler LA. Fas ligand-mediated apoptosis in degenerative disorders of the brain. J Clin Immunol 23:439– 46, 2003.
  • Kumar V, Abbas AK, Fausto N. Cellular adaptations, cell injury, and cell death. In Kumar V, Abbas AK, Fausto N, editors. Pathologic basis of disease. Philadelphia, Pennsylvania: Elsevier Saunders, 3-46, 2005.
  • Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306, 1980.
  • Farber JL, El Mofty SK. The biochemical pathology of liver cell necrosis. Am J Pathol 81:237–250, 1975.
  • Yuan J. Evolutionary conservation of a genetic pathway of programmed cell death. J Cell Biochem 60:4–11, 1996.
  • Schittny JC, Djonov V, Fine A, Burri PH. Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 18:786–793, 1998.
  • Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15, 1995.
  • Trump BF, Berezesky IK, Chang SH, Phelps PC. The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25:82–8, 1997.
  • Savill J, Fadok V. Corpse clearance defines the meaning of cell death. Nature 407:784–8, 2000.
  • Kurosaka K, Takahashi M, Watanabe N, Kobayashi Y. Silent cleanup of very early apoptotic cells by macrophages. J Immunol 171:4672–9, 2003.
  • Zeiss CJ. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol 40:481–95, 2003.
  • Fiers W, Beyaert R, Declercq W, Vandenabeele P. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–30, 1999.
  • Metzstein MM, Stanfield GM, Horvitz HR. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–6, 1998.
  • Hoeppner DJ, Hengartner MO, Schnabel R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412:202–6, 2001.
  • Diez-Roux G, Lang RA. Macrophages induce apoptosis in normal cells in vivo. Development 124:3633–8, 1997.
  • Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74:453–62, 1993.
  • Little GH, Flores A. Inhibition of programmed cell death by catalase and phenylalanine methyl ester. Comp Biochem Physiol Comp Physiol 105:79–83, 1993.
  • Geske FJ, Lieberman R, Strange R, Gerschenson LE. Early stages of p53-induced apoptosis are reversible. Cell Death Fiffer 8:182-191, 2001.
  • Hengartner MO. The biochemistry of apoptosis. Nature 407:770–776, 2000.
  • Cohen GM. Caspases: the executioners of apoptosis. Biochem J 326(1):1–16, 1997.
  • Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds 4:138–44, 2005.
  • Hu S, Snipas SJ, Vincenz C, Salvesen G, Dixit VM. Caspase- 14 is a novel developmentally regulated protease. J Biol Chem 273:29648–53, 1998.
  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmicreticulum- specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98– 103, 2000.
  • Kang SJ, Wang S, Kuida K, Yuan J. Distinct downstream pathways of caspase-11 in regulating apoptosis and cytokine maturation during septic shock response. Cell Death Differ 9:1115–25, 2002.
  • Bortner CD, Oldenburg NB, Cidlowski JA. The role of DNA fragmentation in apoptosis. Trends Cell Biol 5:21–6, 1995.
  • Bratton DL, Fadok VA, Richter DA, Jenai MK, Guthrie LA, Henson PM. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272:26159-26165, 1997.
  • Vermeulen K, Bockstaele DRV, Berneman ZN. Apoptosis: mechanisms and relevance in cancer Ann Hematol 84: 627– 639, 2005.
  • Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 281:1312–1316, 1998.
  • Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424, 1999.
  • Duriez PJ, Shah GM. Cleavage of poly(ADP- ribose)polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337–349, 1997.
  • Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16443–16446, 1996.
  • Mashima T, Naito M, Fujita N, Noguchi K, Tsuruo T. Identification of actin as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16–induced U937 apoptosis. Biochem Biophys Res Commun 217:1185–1192, 1995.
  • Song Q, Lees-Miller SP, Kumar S, Zhang Z, Chan DW, Smith GC, Jackson SP, Alnemri ES, Litwack G, Khanna KK, Lavin MF. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J 15:3238– 3246, 1996.
  • Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 273:7141– 7147, 1998.
  • Barkett M, Xue D, Horvitz HR, Gilmore TD. Phosphorylation of IkappaB-alpha inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem 272:29419–29422, 1997.
  • Tan X, Martin SJ, Green DR, Wang JYJ. Degradation of retinoblastoma protein in tumor necrosis factor- and CD95- induced cell death. J Biol Chem 272:9613–9616, 1997.
  • Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774, 1992.
  • Celebi A. Meme kanserli hastalarda CASP8 ve CASP9 gen polimorfizmlerinin araştırılması. Düzce-2011.
  • McCarthy NJ, Whyte MK, Gilbert CS, Evan GI. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J Cell Biol 136:215–227, 1997.
  • Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin PR, Chapman KT. Inactivation of interleukin-1 beta converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33:3934–3940, 1994.
  • Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P. Caspase inhibition causes hyperacute tumor necrosis factor- induced shock via oxidative stress and phospholipase A2. Nat Immunol 4:387–393, 2003.
  • Mathiasen IS, Jaattela M. Triggering caspase-independent cell death to combat cancer. Trends Mol Med 8:212–220, 2002.
  • Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 305:626–629, 2004.
  • Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598, 2001.
  • Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J. Viral FLICE- inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386:517–521, 1997.
  • Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S, Wang Y, Fernandes AT, Croce CM, Litwack G, Tomaselli KJ, Armstrong RC, Alnemri ES. FLAME-1, a novel FADD like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 272:18542–18545, 1997.
  • Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition of death receptor signals by cellular FLIP [see comments]. Nature 388:190– 195, 1997.
  • Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810–6, 2000.
  • Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev 13:239–52, 1999.
  • Uren AG, Coulson EJ, Vaux DL. Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeast. Trends Biochem Sci 23:159–162, 1998.
  • LaCasse E, Baird S, Korneluk R, MacKenzie A. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17:3247–3259, 1998.
  • Ambrosini G, Adida C, Altieri DC. A novel antiapoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921, 1997.
  • Van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–26, 2002.
  • Livingston DJ. In vitro and in vivo studies of ICE inhibitors. J Cell Biochem 64:19–26, 1997.
  • Le GT, Abbenante G. Inhibitors of TACE and Caspase-1 as anti-inflammatory drugs. Curr Med Chem 12:2963–77, 2005.
  • Pathan N, Marusawa H, Krajewska M, Matsuzawa S, Kim H, Okada K, Torii S, Kitada S, Krajewski S, Welsh K, Pio F,Godzik A, Reed JC. TUCAN, an antiapoptotic caspaseassociated recruitment domain family protein overexpressed in cancer. J Biol Chem 276:32220–32229, 2001.
  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475, 2000.
  • Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, Tobar A, Vidne BA. Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 284:H2351–9, 2003.
  • Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, Church DJ, Korsmeyer SJ, Martinou JC, Antonsson B. Bax channel inhibitors prevent mitochondrion- mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem 280:42960-70, 2005.
  • Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 266:699–717, 1999.
  • Joaquin AM, Gollapudi S. Functional decline in aging and disease: a role for apoptosis. J Am Geriatr Soc 49:1234–1240, 2001.
  • Fanidi A, Harrington EA, Evan GI. Cooperative interaction between c-myc and bcl-2 proto-oncogene. Nature 359:554- 556, 1992.
  • Raff MC. Social controls on cell survival and cell death. Nature 356:397-400, 1992.
  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348, 2001.
  • Reed JC, Miyashita T, Takayama S, Wang HG, Sato T, Krajewski S, Aime SC, Bodrug S, Kitada S, Hanada M. BCL- 2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 60:23–32, 1996.
  • Tsujimoto Y, Yunis J, Onorato SL, Erikson J, Nowell PC, Croce CM. Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406, 1984.
  • Puthier D, Derenne S, Barille S, Moreau P, Harousseau JL, Bataille R, Amiot M. Mcl-1 and Bcl-XL are co-regulated by IL-6 in human myeloma cells. J Cell Biol 97:1235-1239, 1999.
  • Michels J, Johnson PW, Packham G. Mcl-1. Int J Biochem Cell Biol 37:267–271, 2005.
  • Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969, 1997.
  • Brimmell M, Mendiola R, Mangion J, Packham G. BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene 16:1803– 1812, 1998.
  • Zamzami N, Brenner C, Marzo I, Susin SA, Kroemer G. Subcellular and submitochondrial mode of action of Bcl-2- like oncoproteins. Oncogene 16:2265–2282, 1998.
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293– 299, 1995.
  • Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R, Mak TW, Lowe SW. Apaf-1 and caspase-9 in p53- dependent apoptosis and tumor inhibition. Science 284:156–159, 1999.
  • Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E et al. Wild-type human p53 and a temperaturesensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15:3032–3040, 1995.
  • Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks KS, Fornace AJ Jr, el Deiry WS. p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 58:1593–1598, 1998.
  • Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 88:323–331, 1997.
  • Schwartz D, Rotter V. p53-dependent cell cycle control: response to genotoxic stress. Semin Cancer Biol 8:325–336, 1998.
  • Muller M, Strand S, Hug H, Heinemann EM, Walczak H,Hofmann WJ, Stremmel W, Krammer PH, Galle PR. Drug- induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest 99:403–413, 1997.
  • Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem 274:36031–36034, 1999.
  • Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancerprone family with Li-Fraumeni syndrome [see comments]. Nature 348:747–749, 1990.
  • Sherr CJ, Weber JD. The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99, 2000.
  • Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254, 2001.
  • Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–946
  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535, 2000.
  • Soung YH, Lee JW, Kim SY, Jang J, Park YG, Park WS, Nam SW, Lee JY, Yoo NJ, Lee SH. CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res 65:815–821, 2005.
  • Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584, 1998.
  • Li F. Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92:212–216, 2005.
  • Schmitt CA, Lowe SW. Apoptosis and therapy. J Pathol 187:127–137, 1999.
  • Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81:3091–3096, 1993.
  • Simonian PL, Grillot DA, Nunez G. Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 90:1208–1216, 1997.
  • Minn AJ, Rudin CM, Boise LH, Thompson CB. Expression of bcl-xL can confer a multidrug resistance phenotype. Blood 86:1903–1910, 1995.
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 6:513–519, 2000.
  • Friesen C, Herr I, Krammer PH, Debatin KM. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug- induced apoptosis in leukemia cells. Nat Med 2:574–577, 1996.
  • Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res 57:3823–3829, 1997.
  • Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, Rotoli B, Young NS, Maciejewski JP. Involvement of Fasmediated apoptosis in the inhibitory effects of interferon- alpha in chronic myelogenous leukemia. Blood 89:957–964, 1997.
  • Min YH, Lee S, Lee JW, Chong SY, Hahn JS, Ko YW.Expression of FAS antigen in acute myeloid leukemia is associated with therapeutic response to chemotherapy. Br J Haematol 93:928–930, 1996.
  • Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, Offringa R. Blockade of the granzim B/perforin pathway through overexpression of the serine protease inhibitor PI- 9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA 98:11515–11520, 2001.
  • Zhang H, Levitt ML. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines. Lung Cancer 23:115–127, 1999.
  • Keith FJ, Bradbury DA, Zhu YM, Russell NH. Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C. Leukemia 9:131–138, 1995.
  • Banerjee D. Genasense (Genta Inc). Curr Opin Investig Drugs 2:574–580, 2001.
  • Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC. Reversal of chemoresistance of lymphoma cells by antisensemediated reduction of bcl-2 gene expression. Antisense Res Dev 4:71–79, 1994.
  • Rudin CM, Kozloff M, Hoffman PC, Edelman MJ, Karnauskas R, Tomek R, Szeto L, Vokes EE. Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J Clin Oncol 22:1110–1117, 2004.
  • Raje N, Kumar S, Hideshima T, Roccaro A, Ishitsuka K, Yasui H, Shiraishi N, Chauhan D, Munshi NC, Green SR, Anderson KC. Seliciclib (CYC202 or R-Roscovitine), a small molecule cyclin dependent kinase inhibitor, mediates activity via downregulation of Mcl-1 in multiple myeloma. Blood prepublished online Apr 12 183. Koty PP, 2005.
  • Tai YT, Strobel T, Kufe D, Cannistra SA. In vivo cytotoxicity of ovarian cancer cells through tumor-selective expression of the Bax gene. Cancer Res 59:2121–2126, 1999.
  • Grad JM, Cepero E, Boise LH. Mitochondria as targets for established and novel anti-cancer agents. Drug Resist Updat 4:85–91, 2001.
  • Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy.J Natl Cancer Inst 92:1042–1053, 2000.
  • Lane PD, Lain S. Therapeutic exploitation of the p53 pathway. Trends Mol Med 8:38–42, 2002.
  • Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310, 2002.
  • Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18:6938–6947, 1999.
  • Fahy BN, Schlieman MG, Mortenson MM, Virudachalam S, Bold RJ. Targeting BCL-2 overexpression in various human malignancies through NF-kappaB inhibition by the proteasome inhibitor bortezomib. Cancer Chemother Pharmacol 56:46–54, 2005.
  • Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J, Kraft AS. The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4:443–449, 2005.
  • Blagosklonny MV. Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16:455– 462, 2002.
  • Schmitt CA, Lowe SW. Apoptosis is critical for drug response in vivo. Drug Resist Updat 4:132–134, 2001.
There are 187 citations in total.

Details

Primary Language Turkish
Journal Section Collection
Authors

Recep Eröz This is me

Ahmet Karataş This is me

Ozan Alper Alkoç This is me

Davut Baltacı This is me

Murat Oktay This is me

Serdar Çolakoğlu This is me

Recep Eröz This is me

Publication Date July 1, 2012
Published in Issue Year 2012 Volume: 14 Issue: 2

Cite

APA Eröz, R., Karataş, A., Alkoç, O. A., Baltacı, D., et al. (2012). Apoptozis Hakkında Bilinenler (Literatür Taraması). Duzce Medical Journal, 14(2), 87-101.
AMA Eröz R, Karataş A, Alkoç OA, Baltacı D, Oktay M, Çolakoğlu S, Eröz R. Apoptozis Hakkında Bilinenler (Literatür Taraması). Duzce Med J. July 2012;14(2):87-101.
Chicago Eröz, Recep, Ahmet Karataş, Ozan Alper Alkoç, Davut Baltacı, Murat Oktay, Serdar Çolakoğlu, and Recep Eröz. “Apoptozis Hakkında Bilinenler (Literatür Taraması)”. Duzce Medical Journal 14, no. 2 (July 2012): 87-101.
EndNote Eröz R, Karataş A, Alkoç OA, Baltacı D, Oktay M, Çolakoğlu S, Eröz R (July 1, 2012) Apoptozis Hakkında Bilinenler (Literatür Taraması). Duzce Medical Journal 14 2 87–101.
IEEE R. Eröz, A. Karataş, O. A. Alkoç, D. Baltacı, M. Oktay, S. Çolakoğlu, and R. Eröz, “Apoptozis Hakkında Bilinenler (Literatür Taraması)”, Duzce Med J, vol. 14, no. 2, pp. 87–101, 2012.
ISNAD Eröz, Recep et al. “Apoptozis Hakkında Bilinenler (Literatür Taraması)”. Duzce Medical Journal 14/2 (July 2012), 87-101.
JAMA Eröz R, Karataş A, Alkoç OA, Baltacı D, Oktay M, Çolakoğlu S, Eröz R. Apoptozis Hakkında Bilinenler (Literatür Taraması). Duzce Med J. 2012;14:87–101.
MLA Eröz, Recep et al. “Apoptozis Hakkında Bilinenler (Literatür Taraması)”. Duzce Medical Journal, vol. 14, no. 2, 2012, pp. 87-101.
Vancouver Eröz R, Karataş A, Alkoç OA, Baltacı D, Oktay M, Çolakoğlu S, Eröz R. Apoptozis Hakkında Bilinenler (Literatür Taraması). Duzce Med J. 2012;14(2):87-101.