Research Article
BibTex RIS Cite

Türk Popülasyonunda Bilgisayarlı Tomografide COVID-19 Hastalarının Trakeobronşiyal Açılarının Ölçümü ve Pnömoni Şiddeti ile Korelasyonu

Year 2022, Volume: 24 Issue: 1, 12 - 17, 30.04.2022
https://doi.org/10.18678/dtfd.1021421

Abstract

Amaç: Bu çalışma, koronavirüs hastalığı 2019 (coronavirus disease 2019, COVID-19) hastalarının bilgisayarlı tomografide (BT) trakeobronşiyal açı değerlerini hesaplamayı ve bu açılar ile BT şiddet skorları (BT-ŞS) arasındaki ilişkiyi araştırmayı amaçlamaktadır. Yetişkin COVID-19 hastalarının trakeobronşiyal açılarını ölçen ve açıların pnömoni şiddeti ile ilişkisini araştıran mevcut bir literatür bulunmamaktadır.
Gereç ve Yöntemler: Bu çalışma, Mayıs ve Ekim 2020 arasında BT çekilen 18-40 yaş arasında 92 RT-PCR testi pozitif hastanın tek merkezli retrospektif analizidir. Sağ bronş açıları (sağ BA), sol bronş açıları (sol BA), subkarinal açılar (SKA) ve interbronşiyal açılar (İBA), geçmişte kullanılan ölçüm modeli ile koronal BT görüntülemelerinde bir radyolog tarafından ölçüldü. BT-ŞS, global skoru 0-25 olan bir görsel skorlama sistemi kullanılarak hesaplandı.
Bulgular: Otuz yedi (%40,2) hastanın BT görüntülemeleri normal iken, 55 (%59,8) hastada akciğer tutulumu vardı. BT-ŞS 0 ile 24 arasında olup ortanca değeri 2,5 idi. Ortalama İBA 81,67±15,20°, ortalama SKA 77,65±15,78°, ortalama sağ BA 39,26±7,51° ve ortalama sol BA 43,35±8,43° olarak hesaplandı. SKA, İBA, sağ BA, sol BA değerleri bakımından COVID-19 pnömonisi olan ve olmayan gruplar arasında istatiksel olarak anlamlı bir farklılık saptanmadı (sırsıyla, p=0,277; p=0,389; p=0,218 ve p=0,227). Ayrıca trakeobronşiyal açılar ile pnömoni BT-ŞS arasında istatiksel olarak anlamlı bir korelasyon bulunmadı.
Sonuç: Çalışmamızda, erişkin Türk COVID-19 hastalarında trakeobronşiyal açı değerlerinin dağılım aralığını hesapladık. Çalışmamıza göre trakeobronşiyal açılar, COVID-19 hastalarında, hastalığın şiddetini ve klinik sonucunu etkilememektedir.

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • Daroszewski M, Szpinda M, Flisiński P, Szpinda A, Woźniak A, Kosiński A, et al. Tracheo-bronchial angles in the human fetus -- an anatomical, digital, and statistical study. Med Sci Monit Basic Res. 2013;19:194-200.
  • Shepard JO, Flores EJ, Abbott GF. Imaging of the trachea. Ann Cardiothorac Surg. 2018;7(2):197-209.
  • Onoe R, Yamashiro T, Handa H, Azagami S, Matsuoka S, Inoue T, et al. 3D-measurement of tracheobronchial angles on inspiratory and expiratory chest CT in COPD: Respiratory changes and correlation with airflow limitation. Int J Chron Obstruct Pulmon Dis. 2018;13:2399-407.
  • Kamel K, Lau G, Stringer M. In vivo and in vitro morphometry of the human trachea. Clin Anat. 2009;22(5):571-9.
  • Chunder R, Nandi S, Guha R, Satyanarayana N. A morphometric study of human trachea and principal bronchi in different age groups in both sexes and its clinical implications. Nepal Med Coll J. 2010;12(4):207-14.
  • Goktalay T, Yaldiz S, Ozgen Alpaydin A, Goktan C, Celik P. An unusual presentation of bronchial rupture. Respir Care. 2011;56(6):858-60.
  • He WX, Han BQ, Liu M, Zhang P, Fan J, Song N, et al. Tracheobronchial reconstructions with bronchoplastic closure: An alternative method in treatment of bronchogenic carcinoma involving the carina or tracheobronchial angle. J Thorac Cardiovasc Surg. 2012;144(2):418-24.
  • Herek D, Herek O, Ufuk F. Tracheobronchial angle measurements in children: An anthropometric retrospective study with multislice computed tomography. Clin Exp Otorhinolaryngol. 2017;10(2):188-92.
  • Mi W, Zhang C, Wang H, Cao J, Li C, Yang L, et al. Measurement and analysis of the tracheobronchial tree in a Chinese population using computed tomography. PLoS One. 2015;10(4):e0123177. Erratum in: PLoS One. 2015;10(6):e0130239.
  • Haskin PH, Goodman LR. Normal tracheal bifurcation angle: a reassessment. Am J Roentgenol. 1982;139(5):879-82.
  • Coppola V, Vallone G, Coscioni E, Coppola M, Maraziti G, Alfinito M, et al. [Normal value of the tracheal bifurcation angle and correlation with left atrial volume]. Radiol Med.1998;95(5):461-5. [Italian].
  • Karabulut N. CT assessment of tracheal carinal angle and its determinants. Br J Radiol. 2005;78(933):787-90.
  • Murray JG, Brown AL, Anagnostou EA, Senior R. Widening of the tracheal bifurcation on chest radiographs: value as a sign of left atrial enlargement. AJR Am J Roentgenol. 1995;164(5):1089-92.
  • Kubota Y, Toyoda Y, Nagata N, Kubota H, Sawada S, Murakawa M, et al. Tracheo-bronchial angles in infants and children. Anesthesiology. 1986;64(3):374-6.
  • Cleveland RH. Symmetry of bronchial angles in children. Radiology. 1979;133(1):89-93.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.
  • Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology. 2020;295(3):715-21.
  • Standring S, Gray H. Gray's anatomy: the anatomical basis of clinical practice. Churchill Livingstone: Elsevier; 2008.
  • Mirjalili SA, McFadden SL, Buckenham T, Wilson B, Stringer MD. Anatomical planes: Are we teaching accurate surface anatomy? Clin Anat. 2012;25(7):819-26.
  • Mirjalili SA, Hale SJ, Buckenham T, Wilson B, Stringer MD. A reappraisal of adult thoracic surface anatomy. Clin Anat. 2012;25(7):827-34.
  • Ziyawudong J, Kawai N, Sato M, Ikoma A, Sanda H, Takeuchi T, et al. Aortic ostia of the bronchial arteries and tracheal bifurcation: MDCT analysis. World J Radiol. 2012;4(1):29-35.
  • Harjeet, Sahni D, Batra YK, Rajeev S. Anatomical dimensions of trachea, main bronchi, subcarinal and bronchial angles in fetuses measured ex vivo. Paediatr Anaesth. 2008;18(11):1029-34.
  • Martínez JM, Prat J, Gómez O, Crispi F, Bennasar M, Puerto B, et al. Decompression through tracheobronchial endoscopy of bronchial atresia presenting as massive pulmonary tumor: a new indication for fetoscopic surgery. Fetal Diagn Ther. 2013;33(1):69-74.
  • Szpinda M, Daroszewski M, Szpinda A, Woźniak A, Wiśniewski M, Mila-Kierzenkowska C, et al. New quantitative patterns of the growing trachea in human fetuses. Med Sci Monit. 2012;18(6):PH63-70.
  • Chen CH, Lai CL, Tsai TT, Lee YC, Perng RP. Foreign body aspiration into the lower airway in Chinese adults. Chest. 1997;112(1):129-33.
  • Taskin V, Bates MC, Chillag SA. Tracheal carinal angle and left atrial size. Arch Intern Med. 1991;151(2):307-8.
  • Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology. 2020;296(2):E41-5.
  • Kanji JN, Zelyas N, MacDonald C, Pabbaraju K, Khan MN, Prasad A, et al. False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virol J. 2021;18(1):13.
  • Ding X, Xu J, Zhou J, Long Q. Chest CT findings of COVID-19 pneumonia by duration of symptoms. Eur J Radiol. 2020;127:109009.
  • Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, et al. Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: A longitudinal study. Radiology. 2020;296(2): E55-64.
  • Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al.; China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.
  • Bhandari S, Rankawat G, Bagarhatta M, Singh A, Singh A, Gupta V, et al. Clinico-radiological evaluation and correlation of CT chest images with progress of disease in COVID-19 patients. J Assoc Physicians India. 2020;68(7):34-42.
  • Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8.
  • Liu W, Tao ZW, Wang L, Yuan ML, Liu K, Zhou L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020;133(9):1032-8.

Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation with Pneumonia Severity in Turkish Population

Year 2022, Volume: 24 Issue: 1, 12 - 17, 30.04.2022
https://doi.org/10.18678/dtfd.1021421

Abstract

Aim: This study aimed to evaluate the values of tracheobronchial angles on computed tomography (CT) and to investigate the relationship between angles and CT severity scores (CT-SS) of coronavirus disease 2019 (COVID-19) patients. There is no available literature measuring tracheobronchial angles of adult COVID-19 patients and investigating the relationship of angles with pneumonia severity.
Material and Methods: This study was a single-center retrospective analysis of 92 RT-PCR positive patients, aged between 18-40 years, who underwent CT between May and October 2020. The right bronchial angles (RBA), left bronchial angles (LBA), subcarinal angles (SCA), and interbronchial angles (IBA) were measured by a radiologist on coronal CT images with the measurement model used in past. CT-SS was calculated by using a visual scoring system with a global score of 0-25.
Results: Thirty-seven (40.2%) patients had normal CT imaging and 55 (59.8%) patients had pulmonary involvement. The CT-SS were ranged from 0 to 24, with a median value of 2.5. The mean IBA was calculated as 81.67±15.20°, mean SCA 77.65±15.78°, mean RBA 39.26±7.51°, and mean LBA 43.35±8.43°. No statistically significant difference was found in SCA, IBA, RBA, and LBA between the groups with and without COVID-19 pneumonia (p=0.277, p=0.389, p=0.218, and p=0.227, respectively). Also, no significant correlation was found between tracheobronchial angles and pneumonia CT-SS of the patients.
Conclusion: We calculated the distribution range of tracheobronchial angle values in the adult Turkish COVID-19 patients. According to our study, tracheobronchial angles don’t affect the disease severity and clinical outcome of COVID-19 patients.

Project Number

Yok

References

  • Daroszewski M, Szpinda M, Flisiński P, Szpinda A, Woźniak A, Kosiński A, et al. Tracheo-bronchial angles in the human fetus -- an anatomical, digital, and statistical study. Med Sci Monit Basic Res. 2013;19:194-200.
  • Shepard JO, Flores EJ, Abbott GF. Imaging of the trachea. Ann Cardiothorac Surg. 2018;7(2):197-209.
  • Onoe R, Yamashiro T, Handa H, Azagami S, Matsuoka S, Inoue T, et al. 3D-measurement of tracheobronchial angles on inspiratory and expiratory chest CT in COPD: Respiratory changes and correlation with airflow limitation. Int J Chron Obstruct Pulmon Dis. 2018;13:2399-407.
  • Kamel K, Lau G, Stringer M. In vivo and in vitro morphometry of the human trachea. Clin Anat. 2009;22(5):571-9.
  • Chunder R, Nandi S, Guha R, Satyanarayana N. A morphometric study of human trachea and principal bronchi in different age groups in both sexes and its clinical implications. Nepal Med Coll J. 2010;12(4):207-14.
  • Goktalay T, Yaldiz S, Ozgen Alpaydin A, Goktan C, Celik P. An unusual presentation of bronchial rupture. Respir Care. 2011;56(6):858-60.
  • He WX, Han BQ, Liu M, Zhang P, Fan J, Song N, et al. Tracheobronchial reconstructions with bronchoplastic closure: An alternative method in treatment of bronchogenic carcinoma involving the carina or tracheobronchial angle. J Thorac Cardiovasc Surg. 2012;144(2):418-24.
  • Herek D, Herek O, Ufuk F. Tracheobronchial angle measurements in children: An anthropometric retrospective study with multislice computed tomography. Clin Exp Otorhinolaryngol. 2017;10(2):188-92.
  • Mi W, Zhang C, Wang H, Cao J, Li C, Yang L, et al. Measurement and analysis of the tracheobronchial tree in a Chinese population using computed tomography. PLoS One. 2015;10(4):e0123177. Erratum in: PLoS One. 2015;10(6):e0130239.
  • Haskin PH, Goodman LR. Normal tracheal bifurcation angle: a reassessment. Am J Roentgenol. 1982;139(5):879-82.
  • Coppola V, Vallone G, Coscioni E, Coppola M, Maraziti G, Alfinito M, et al. [Normal value of the tracheal bifurcation angle and correlation with left atrial volume]. Radiol Med.1998;95(5):461-5. [Italian].
  • Karabulut N. CT assessment of tracheal carinal angle and its determinants. Br J Radiol. 2005;78(933):787-90.
  • Murray JG, Brown AL, Anagnostou EA, Senior R. Widening of the tracheal bifurcation on chest radiographs: value as a sign of left atrial enlargement. AJR Am J Roentgenol. 1995;164(5):1089-92.
  • Kubota Y, Toyoda Y, Nagata N, Kubota H, Sawada S, Murakawa M, et al. Tracheo-bronchial angles in infants and children. Anesthesiology. 1986;64(3):374-6.
  • Cleveland RH. Symmetry of bronchial angles in children. Radiology. 1979;133(1):89-93.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
  • Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045.
  • Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology. 2020;295(3):715-21.
  • Standring S, Gray H. Gray's anatomy: the anatomical basis of clinical practice. Churchill Livingstone: Elsevier; 2008.
  • Mirjalili SA, McFadden SL, Buckenham T, Wilson B, Stringer MD. Anatomical planes: Are we teaching accurate surface anatomy? Clin Anat. 2012;25(7):819-26.
  • Mirjalili SA, Hale SJ, Buckenham T, Wilson B, Stringer MD. A reappraisal of adult thoracic surface anatomy. Clin Anat. 2012;25(7):827-34.
  • Ziyawudong J, Kawai N, Sato M, Ikoma A, Sanda H, Takeuchi T, et al. Aortic ostia of the bronchial arteries and tracheal bifurcation: MDCT analysis. World J Radiol. 2012;4(1):29-35.
  • Harjeet, Sahni D, Batra YK, Rajeev S. Anatomical dimensions of trachea, main bronchi, subcarinal and bronchial angles in fetuses measured ex vivo. Paediatr Anaesth. 2008;18(11):1029-34.
  • Martínez JM, Prat J, Gómez O, Crispi F, Bennasar M, Puerto B, et al. Decompression through tracheobronchial endoscopy of bronchial atresia presenting as massive pulmonary tumor: a new indication for fetoscopic surgery. Fetal Diagn Ther. 2013;33(1):69-74.
  • Szpinda M, Daroszewski M, Szpinda A, Woźniak A, Wiśniewski M, Mila-Kierzenkowska C, et al. New quantitative patterns of the growing trachea in human fetuses. Med Sci Monit. 2012;18(6):PH63-70.
  • Chen CH, Lai CL, Tsai TT, Lee YC, Perng RP. Foreign body aspiration into the lower airway in Chinese adults. Chest. 1997;112(1):129-33.
  • Taskin V, Bates MC, Chillag SA. Tracheal carinal angle and left atrial size. Arch Intern Med. 1991;151(2):307-8.
  • Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology. 2020;296(2):E41-5.
  • Kanji JN, Zelyas N, MacDonald C, Pabbaraju K, Khan MN, Prasad A, et al. False negative rate of COVID-19 PCR testing: a discordant testing analysis. Virol J. 2021;18(1):13.
  • Ding X, Xu J, Zhou J, Long Q. Chest CT findings of COVID-19 pneumonia by duration of symptoms. Eur J Radiol. 2020;127:109009.
  • Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, et al. Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: A longitudinal study. Radiology. 2020;296(2): E55-64.
  • Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al.; China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.
  • Bhandari S, Rankawat G, Bagarhatta M, Singh A, Singh A, Gupta V, et al. Clinico-radiological evaluation and correlation of CT chest images with progress of disease in COVID-19 patients. J Assoc Physicians India. 2020;68(7):34-42.
  • Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395(10229):1054-62.
  • Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8.
  • Liu W, Tao ZW, Wang L, Yuan ML, Liu K, Zhou L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020;133(9):1032-8.
There are 36 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Burcu Akman 0000-0002-1067-9008

Hatice Ayça Ata Korkmaz 0000-0001-9987-3351

Project Number Yok
Publication Date April 30, 2022
Submission Date November 9, 2021
Published in Issue Year 2022 Volume: 24 Issue: 1

Cite

APA Akman, B., & Ata Korkmaz, H. A. (2022). Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation with Pneumonia Severity in Turkish Population. Duzce Medical Journal, 24(1), 12-17. https://doi.org/10.18678/dtfd.1021421
AMA Akman B, Ata Korkmaz HA. Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation with Pneumonia Severity in Turkish Population. Duzce Med J. April 2022;24(1):12-17. doi:10.18678/dtfd.1021421
Chicago Akman, Burcu, and Hatice Ayça Ata Korkmaz. “Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation With Pneumonia Severity in Turkish Population”. Duzce Medical Journal 24, no. 1 (April 2022): 12-17. https://doi.org/10.18678/dtfd.1021421.
EndNote Akman B, Ata Korkmaz HA (April 1, 2022) Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation with Pneumonia Severity in Turkish Population. Duzce Medical Journal 24 1 12–17.
IEEE B. Akman and H. A. Ata Korkmaz, “Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation with Pneumonia Severity in Turkish Population”, Duzce Med J, vol. 24, no. 1, pp. 12–17, 2022, doi: 10.18678/dtfd.1021421.
ISNAD Akman, Burcu - Ata Korkmaz, Hatice Ayça. “Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation With Pneumonia Severity in Turkish Population”. Duzce Medical Journal 24/1 (April 2022), 12-17. https://doi.org/10.18678/dtfd.1021421.
JAMA Akman B, Ata Korkmaz HA. Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation with Pneumonia Severity in Turkish Population. Duzce Med J. 2022;24:12–17.
MLA Akman, Burcu and Hatice Ayça Ata Korkmaz. “Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation With Pneumonia Severity in Turkish Population”. Duzce Medical Journal, vol. 24, no. 1, 2022, pp. 12-17, doi:10.18678/dtfd.1021421.
Vancouver Akman B, Ata Korkmaz HA. Measurement of Tracheobronchial Angles of COVID-19 Patients on Computed Tomography and Correlation with Pneumonia Severity in Turkish Population. Duzce Med J. 2022;24(1):12-7.