Research Article
BibTex RIS Cite

Evaluation of the Therapeutic Effects of Thymbra Spicata L. var spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study

Year 2025, Volume: 27 Issue: 2, 137 - 145, 30.08.2025
https://doi.org/10.18678/dtfd.1611897

Abstract

Aim: Secondary tissue damage caused by oxidative stress and inflammation in spinal cord injury complicates treatment and highlights the need for novel therapeutic agents. This study aimed to evaluate the potential effects of Thymbra spicata L. var. spicata (zahter) and Cyclotrichium origanifolium (mountain mint) extracts in an experimental SCI model.
Material and Methods: Thirty-six male Wistar albino rats were randomly assigned to six groups: control, zahter, mountain mint, trauma, trauma+zahter, and trauma+mountain mint. Spinal cord injury was induced in the trauma groups. Blood was collected via cardiac puncture, and spinal tissues were obtained for histopathological and immunohistochemical analyses. Serum MDA, TAS, and TOS levels were measured biochemically. VEGF and GFAP expressions were assessed immunohistochemically.
Results: MDA and TOS levels decreased, while TAS levels increased in the treated groups compared to the trauma group, but these changes were not found statistically significant. Histopathological evaluation showed prominent neuronal degeneration, inflammation, and vascular dilatation in the trauma group, which were alleviated in the treatment groups. Greater histological improvement was observed in the trauma+mountain mint group compared to trauma+zahter (p<0.001). VEGF and GFAP expressions were elevated in the trauma group but statistically significantly reduced in the treatment groups (p<0.001).
Conclusion: Zahter and mountain mint extracts exhibited therapeutic potential against trauma-induced spinal cord injury by modulating inflammation and tissue damage. Mountain mint was found to be more effective in terms of histological and immunohistochemical outcomes.

References

  • Yu M, Wang Z, Wang D, Aierxi M, Ma Z, Wang Y. Oxidative stress following spinal cord injury: from molecular mechanisms to therapeutic targets. J Neurosci Res. 2023;101(10):1538-54.
  • Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, et al. Polyphenols targeting oxidative stress in spinal cord injury: current status and future vision. Oxid Med Cell Longev. 2022;2022:8741787.
  • Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;13;21(20):7533.
  • Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2):281-99.
  • von Leden RE, Yauger YJ, Khayrullina G, Byrnes KR. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets. J Neurotrauma. 2017;34(4):755-64.
  • Öz M. Chemical content and antimicrobial activity of cyclotrichium origanifolium (Labill.) manden. & scheng. plant essential oil obtained from Adana region. J Bartın Fac For. 2022;24(3):465-75. Turkish.
  • Koç Direk F, Tuncer MC, Deveci E, Yokuş B, Nas C, Aygün Keşim D. Investigation of the protective effect of thymbra spicata L. var spicata and cyclotrichium origanifolium on kidney in experimental traumatic spinal cord injury. Dicle Med J. 2021;48(2):299-308. Turkish.
  • Tepe B, Sökmen M, Sökmen A, Daferera D, Polissiou M. Antimicrobial and antioxidative activity of the essential oil and various extracts of cyclotrichium origanifolium (Labill.) manden & scheng. J Food Eng. 2005;69(3):335-42.
  • Karakaş Ö, Bekler FM. Essential oil compositions and antimicrobial activities of thymbra spicata L. var. spicata L., lavandula x intermedia emeric ex loisel., satureja macrantha C. A. meyer and rosmarinus officinalis L. Braz Arch Biol Technol. 2022;65:e22210297.
  • Kirkan B, Sarıkurkcu C, Amarowicz R. Composition and antioxidant and enzyme‐inhibition activities, of essential oils from satureja thymbra and thymbra spicata var. spicata. Flavour Fragr J. 2019;34(6):436-42.
  • Kılıç T. Analysis of essential oil composition of thymbra spicata L var. spicata: antifungal antibacterial and antimycobacterial activities. Z Naturforsch C J Biosci. 2006;61(5-6):324-8.
  • Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: a preliminary report. JAMA. 1911;57(11):878-80.
  • Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg. 1977;47(4):577-81.
  • Gedikoğlu A, Sökmen M, Çivit A. Evaluation of thymus vulgaris and thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci Nutr. 2019;7(5):1704-14.
  • Lin A, Shaaya E, Calvert JS, Parker SR, Borton DA, Fridley JS. A review of functional restoration from spinal cord stimulation in patients with spinal cord injury. Neurospine. 2022;19(3):703-34.
  • Guzel A, Aksit H, Elmastas M, Erenler R. Bioassay-guided isolation and identification of antioxidant flavonoids from cyclotrichium origanifolium (Labill.) manden and scheng. Pharmacogn Mag. 2017;13(50):316-20.
  • Zhang Q, Yang H, An J, Zhang R, Chen B, Hao DJ. Therapeutic effects of traditional Chinese medicine on spinal cord injury: a promising supplementary treatment in future. Evid Based Complement Alternat Med. 2016;2016:8958721.
  • Javdani M, Barzegar A. Application of chitosan hydrogels in traumatic spinal cord injury; a therapeutic approach based on the anti-inflammatory and antioxidant properties of selenium nanoparticles. Frontiers Biomed Technol. 2023;10(3):349-69.
  • Lee YS, Cho DC, Kim CH, Han I, Gil EY, Kim KT. Effect of curcumin on the inflammatory reaction and functional recovery after spinal cord injury in a hyperglycemic rat model. Spine J. 2019;19(12):2025-39.
  • Sanli AM, Turkoglu E, Serbes G, Sargon MF, Besalti O, Kilinc K, et al. Effect of curcumin on lipid peroxidation, early ultrastructural findings and neurological recovery after experimental spinal cord contusion injury in rats. Turk Neurosur. 2012;22(2):189-195.
  • Jiang ZS, Pu ZC, Hao ZH. Carvacrol protects against spinal cord injury in rats via suppressing oxidative stress and the endothelial nitric oxide synthase pathway. Mol Med Rep. 2015;12(4):5349-54.
  • Michael-Titus AT. Omega-3 fatty acids and neurological injury. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5-6):295-300.
  • Golding JD, Rigley MacDonald ST, Juurlink BH, Rosser BW. The effect of glutamine on locomotor performance and skeletal muscle myosins following spinal cord injury in rats. J Appl Physiol (1985). 2006;101(4):1045-52.
  • Rahman A, Üstündağ B, Burma O, Özercan İH, Erol FS. Neuroprotective effect of regional carnitine on spinal cord ischemia--reperfusion injury. Eur J Cardiothorac Surg. 2001;20(1):65-70.
  • Draper HH, McGirr LG, Hadley M. The metabolism of malondialdehyde. Lipids. 1986;21(4):305-7.
  • Zhang C, Zhai T, Zhu J, Wei D, Ren S, Yang Y, et al. Research progress of antioxidants in oxidative stress therapy after spinal cord injury. Neurochem Res. 2023;48(12):3473-84.
  • Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55-74.
  • Sahin Kavakli H, Koca C, Alıcı O. Antioxidant effects of curcumin in spinal cord injury in rats. Ulus Travma Acil Cerrahi Derg. 2011;17(1):14-8.
  • Birer S, Arda H. Kilic D. Baskol G. Systemic oxidative stress in non-arteritic anterior ischemic optic neuropathy. Eye (Lond). 2019;33(7):1140-4.
  • Gariballa SE, Hutchin TP, Sinclair AJ. Antioxidant capacity after acute ischaemic stroke. QJM. 2002;95(10):685-90.
  • Aras M, Altas M, Motor S, Dokuyucu R, Yilmaz A, Özgiray E, et al. Protective effects of minocycline on experimental spinal cord injury in rats. Injury. 2015;46(8):1471-4.
  • Şensoy D, Polat Ö, Kılıç G, Yakupoğlu M, Karaçor K. Clinical and histopathological effects of isotretinoin on neuroregeneration in experimental spinal cord injury. Duzce Med J. 2024;26(3):248-54.
  • Long HQ, Li GS, Cheng X, Xu JH, Li FB. Role of hypoxia-induced VEGF in blood-spinal cord barrier disruption in chronic spinal cord injury. Chin J Traumatol. 2015;18(5):293-5.
  • Cheng X, Yu Z, Xu J, Quan D, Long H. Pathophysiological changes and the role of notch-1 activation after decompression in a compressive spinal cord injury rat model. Front Neurosci. 2021;15:579431.
  • Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. 2000;25(9-10):1439-51.
  • Nazari-Robati M, Akbari M, Khaksari M, Mirzaee M. Trehalose attenuates spinal cord injury through the regulation of oxidative stress, inflammation and GFAP expression in rats. J Spinal Cord Med. 2019;42(3):387-94.

Omurilik Yaralanmasında Thymbra Spicata L. var spicata ve Cyclotrichium Origanifolium’un Terapötik Etkilerinin Değerlendirilmesi: Deneysel Bir Çalışma

Year 2025, Volume: 27 Issue: 2, 137 - 145, 30.08.2025
https://doi.org/10.18678/dtfd.1611897

Abstract

Amaç: Omurilik yaralanmasında gelişen oksidatif stres ve inflamasyona bağlı ikincil doku hasarı, tedaviyi güçleştirmekte ve yeni terapötik ajanlara olan ihtiyacı artırmaktadır. Bu çalışmanın amacı, deneysel bir omurilik yaralanması modelinde Thymbra spicata L. var. spicata (zahter) ve Cyclotrichium origanifolium (dağ nanesi) ekstraktlarının terapötik etkilerini değerlendirmektir.
Gereç ve Yöntemler: Otuz altı erkek Wistar Albino sıçanı rastgele altı gruba ayrıldı: kontrol, zahter, dağ nanesi, travma, travma+zahter ve travma+dağ nanesi. Travma gruplarında omurilik yaralanması oluşturuldu. Kan örnekleri kardiyak ponksiyon yoluyla toplandı ve histopatolojik ve immünohistokimyasal analizler için omurilik dokuları elde edildi. Serum MDA, TAS ve TOS düzeyleri biyokimyasal yöntemlerle analiz edildi. VEGF ve GFAP ekspresyonları immünohistokimyasal yöntemlerle değerlendirildi.
Bulgular: Tedavi edilen gruplarda, travma grubuna kıyasla MDA ve TOS düzeyleri azalmış, TAS düzeyi ise artmıştır; ancak bu değişiklikler istatistiksel olarak anlamlı bulunmamıştır. Histopatolojik analizlerde, travma grubunda belirgin nöronal dejenerasyon, inflamasyon ve vasküler genişleme gözlenmiş; tedavi gruplarında ise bu bulgularda düzelme olduğu görülmüştür. Travma+dağ nanesi grubunda travma+zahter grubuna göre daha fazla histolojik iyileşme gözlenmiştir (p<0,001). VEGF ve GFAP ekspresyonları travma grubunda yüksek iken, tedavi gruplarında ise istatistiksel olarak anlamlı şekilde azalmıştır (p<0,001).
Sonuç: Zahter ve dağ nanesi ekstraktları, travmaya bağlı omurilik yaralanmasında inflamasyon ve doku hasarı mekanizmaları üzerine etki ederek terapötik potansiyel göstermiştir. Dağ nanesi, histolojik ve immünohistokimyasal parametreler açısından daha etkili bulunmuştur.

References

  • Yu M, Wang Z, Wang D, Aierxi M, Ma Z, Wang Y. Oxidative stress following spinal cord injury: from molecular mechanisms to therapeutic targets. J Neurosci Res. 2023;101(10):1538-54.
  • Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, et al. Polyphenols targeting oxidative stress in spinal cord injury: current status and future vision. Oxid Med Cell Longev. 2022;2022:8741787.
  • Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;13;21(20):7533.
  • Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2):281-99.
  • von Leden RE, Yauger YJ, Khayrullina G, Byrnes KR. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets. J Neurotrauma. 2017;34(4):755-64.
  • Öz M. Chemical content and antimicrobial activity of cyclotrichium origanifolium (Labill.) manden. & scheng. plant essential oil obtained from Adana region. J Bartın Fac For. 2022;24(3):465-75. Turkish.
  • Koç Direk F, Tuncer MC, Deveci E, Yokuş B, Nas C, Aygün Keşim D. Investigation of the protective effect of thymbra spicata L. var spicata and cyclotrichium origanifolium on kidney in experimental traumatic spinal cord injury. Dicle Med J. 2021;48(2):299-308. Turkish.
  • Tepe B, Sökmen M, Sökmen A, Daferera D, Polissiou M. Antimicrobial and antioxidative activity of the essential oil and various extracts of cyclotrichium origanifolium (Labill.) manden & scheng. J Food Eng. 2005;69(3):335-42.
  • Karakaş Ö, Bekler FM. Essential oil compositions and antimicrobial activities of thymbra spicata L. var. spicata L., lavandula x intermedia emeric ex loisel., satureja macrantha C. A. meyer and rosmarinus officinalis L. Braz Arch Biol Technol. 2022;65:e22210297.
  • Kirkan B, Sarıkurkcu C, Amarowicz R. Composition and antioxidant and enzyme‐inhibition activities, of essential oils from satureja thymbra and thymbra spicata var. spicata. Flavour Fragr J. 2019;34(6):436-42.
  • Kılıç T. Analysis of essential oil composition of thymbra spicata L var. spicata: antifungal antibacterial and antimycobacterial activities. Z Naturforsch C J Biosci. 2006;61(5-6):324-8.
  • Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: a preliminary report. JAMA. 1911;57(11):878-80.
  • Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg. 1977;47(4):577-81.
  • Gedikoğlu A, Sökmen M, Çivit A. Evaluation of thymus vulgaris and thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci Nutr. 2019;7(5):1704-14.
  • Lin A, Shaaya E, Calvert JS, Parker SR, Borton DA, Fridley JS. A review of functional restoration from spinal cord stimulation in patients with spinal cord injury. Neurospine. 2022;19(3):703-34.
  • Guzel A, Aksit H, Elmastas M, Erenler R. Bioassay-guided isolation and identification of antioxidant flavonoids from cyclotrichium origanifolium (Labill.) manden and scheng. Pharmacogn Mag. 2017;13(50):316-20.
  • Zhang Q, Yang H, An J, Zhang R, Chen B, Hao DJ. Therapeutic effects of traditional Chinese medicine on spinal cord injury: a promising supplementary treatment in future. Evid Based Complement Alternat Med. 2016;2016:8958721.
  • Javdani M, Barzegar A. Application of chitosan hydrogels in traumatic spinal cord injury; a therapeutic approach based on the anti-inflammatory and antioxidant properties of selenium nanoparticles. Frontiers Biomed Technol. 2023;10(3):349-69.
  • Lee YS, Cho DC, Kim CH, Han I, Gil EY, Kim KT. Effect of curcumin on the inflammatory reaction and functional recovery after spinal cord injury in a hyperglycemic rat model. Spine J. 2019;19(12):2025-39.
  • Sanli AM, Turkoglu E, Serbes G, Sargon MF, Besalti O, Kilinc K, et al. Effect of curcumin on lipid peroxidation, early ultrastructural findings and neurological recovery after experimental spinal cord contusion injury in rats. Turk Neurosur. 2012;22(2):189-195.
  • Jiang ZS, Pu ZC, Hao ZH. Carvacrol protects against spinal cord injury in rats via suppressing oxidative stress and the endothelial nitric oxide synthase pathway. Mol Med Rep. 2015;12(4):5349-54.
  • Michael-Titus AT. Omega-3 fatty acids and neurological injury. Prostaglandins Leukot Essent Fatty Acids. 2007;77(5-6):295-300.
  • Golding JD, Rigley MacDonald ST, Juurlink BH, Rosser BW. The effect of glutamine on locomotor performance and skeletal muscle myosins following spinal cord injury in rats. J Appl Physiol (1985). 2006;101(4):1045-52.
  • Rahman A, Üstündağ B, Burma O, Özercan İH, Erol FS. Neuroprotective effect of regional carnitine on spinal cord ischemia--reperfusion injury. Eur J Cardiothorac Surg. 2001;20(1):65-70.
  • Draper HH, McGirr LG, Hadley M. The metabolism of malondialdehyde. Lipids. 1986;21(4):305-7.
  • Zhang C, Zhai T, Zhu J, Wei D, Ren S, Yang Y, et al. Research progress of antioxidants in oxidative stress therapy after spinal cord injury. Neurochem Res. 2023;48(12):3473-84.
  • Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55-74.
  • Sahin Kavakli H, Koca C, Alıcı O. Antioxidant effects of curcumin in spinal cord injury in rats. Ulus Travma Acil Cerrahi Derg. 2011;17(1):14-8.
  • Birer S, Arda H. Kilic D. Baskol G. Systemic oxidative stress in non-arteritic anterior ischemic optic neuropathy. Eye (Lond). 2019;33(7):1140-4.
  • Gariballa SE, Hutchin TP, Sinclair AJ. Antioxidant capacity after acute ischaemic stroke. QJM. 2002;95(10):685-90.
  • Aras M, Altas M, Motor S, Dokuyucu R, Yilmaz A, Özgiray E, et al. Protective effects of minocycline on experimental spinal cord injury in rats. Injury. 2015;46(8):1471-4.
  • Şensoy D, Polat Ö, Kılıç G, Yakupoğlu M, Karaçor K. Clinical and histopathological effects of isotretinoin on neuroregeneration in experimental spinal cord injury. Duzce Med J. 2024;26(3):248-54.
  • Long HQ, Li GS, Cheng X, Xu JH, Li FB. Role of hypoxia-induced VEGF in blood-spinal cord barrier disruption in chronic spinal cord injury. Chin J Traumatol. 2015;18(5):293-5.
  • Cheng X, Yu Z, Xu J, Quan D, Long H. Pathophysiological changes and the role of notch-1 activation after decompression in a compressive spinal cord injury rat model. Front Neurosci. 2021;15:579431.
  • Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. 2000;25(9-10):1439-51.
  • Nazari-Robati M, Akbari M, Khaksari M, Mirzaee M. Trehalose attenuates spinal cord injury through the regulation of oxidative stress, inflammation and GFAP expression in rats. J Spinal Cord Med. 2019;42(3):387-94.
There are 36 citations in total.

Details

Primary Language English
Subjects Anatomy
Journal Section Research Article
Authors

Figen Koç Direk 0000-0002-4748-2110

M. Cudi Tuncer 0000-0001-7317-5467

Engin Deveci 0000-0002-2353-1184

Dilek Aygün Keşim 0000-0001-5481-1130

Hüseyin Özevren 0000-0002-5437-4003

Early Pub Date June 19, 2025
Publication Date August 30, 2025
Submission Date January 2, 2025
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 27 Issue: 2

Cite

APA Koç Direk, F., Tuncer, M. C., Deveci, E., … Aygün Keşim, D. (2025). Evaluation of the Therapeutic Effects of Thymbra Spicata L. var spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study. Duzce Medical Journal, 27(2), 137-145. https://doi.org/10.18678/dtfd.1611897
AMA Koç Direk F, Tuncer MC, Deveci E, Aygün Keşim D, Özevren H. Evaluation of the Therapeutic Effects of Thymbra Spicata L. var spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study. Duzce Med J. August 2025;27(2):137-145. doi:10.18678/dtfd.1611897
Chicago Koç Direk, Figen, M. Cudi Tuncer, Engin Deveci, Dilek Aygün Keşim, and Hüseyin Özevren. “Evaluation of the Therapeutic Effects of Thymbra Spicata L. Var Spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study”. Duzce Medical Journal 27, no. 2 (August 2025): 137-45. https://doi.org/10.18678/dtfd.1611897.
EndNote Koç Direk F, Tuncer MC, Deveci E, Aygün Keşim D, Özevren H (August 1, 2025) Evaluation of the Therapeutic Effects of Thymbra Spicata L. var spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study. Duzce Medical Journal 27 2 137–145.
IEEE F. Koç Direk, M. C. Tuncer, E. Deveci, D. Aygün Keşim, and H. Özevren, “Evaluation of the Therapeutic Effects of Thymbra Spicata L. var spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study”, Duzce Med J, vol. 27, no. 2, pp. 137–145, 2025, doi: 10.18678/dtfd.1611897.
ISNAD Koç Direk, Figen et al. “Evaluation of the Therapeutic Effects of Thymbra Spicata L. Var Spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study”. Duzce Medical Journal 27/2 (August2025), 137-145. https://doi.org/10.18678/dtfd.1611897.
JAMA Koç Direk F, Tuncer MC, Deveci E, Aygün Keşim D, Özevren H. Evaluation of the Therapeutic Effects of Thymbra Spicata L. var spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study. Duzce Med J. 2025;27:137–145.
MLA Koç Direk, Figen et al. “Evaluation of the Therapeutic Effects of Thymbra Spicata L. Var Spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study”. Duzce Medical Journal, vol. 27, no. 2, 2025, pp. 137-45, doi:10.18678/dtfd.1611897.
Vancouver Koç Direk F, Tuncer MC, Deveci E, Aygün Keşim D, Özevren H. Evaluation of the Therapeutic Effects of Thymbra Spicata L. var spicata and Cyclotrichium Origanifolium in Spinal Cord Injury: An Experimental Study. Duzce Med J. 2025;27(2):137-45.