Research Article
BibTex RIS Cite

Promotör Bağımsız CpG Zengini A2UCOE Alt Bölgelerinin Transgen Ekspresyonu Üzerine Etkisi

Year 2025, Issue: Early Access
https://doi.org/10.18678/dtfd.1653329

Abstract

Amaç: Bu çalışmanın amacı, HNRPA2B1 ve CBX3 promotörleri hariç olmak üzere, A2UCOE elemanındaki CpG zengin alt bölgelerin lentiviral sistemlerde uzun süreli transgen ekspresyonunu sürdürme yeteneğini değerlendirmektir. Bu bölgeler spleen focus-forming virüs (SFFV) promotörünün önüne klonlanmış ve P19 ile F9 hücrelerinde test edilmiştir.
Gereç ve Yöntemler: Bu çalışmada, promotör içermeyen üç A2UCOE alt bölgesinin ubiquitous chromatin opening element (UCOE) aktivitesi değerlendirildi. P19 ve F9 fare embriyonal karsinom hücreleri kullanılarak, farklılaşmamış ve farklılaşmış durumlarda enhanced green fluorescent protein (eGFP) ekspresyon stabilitesi ve dayanıklılığı incelendi. CpG zengin, promotörsüz fragmanlar içeren lentiviral vektörler (LV’ler), 455UCOE (OFA1), 527UCOE (OFA2) ve 945UCOE (OFA3) hücrelere aktarıldı ve akım sitometrisiyle sürekli transkripsiyonel aktivite analiz edildi.
Bulgular: Bazı vektörler eGFP ekspresyonunu sürdürürken bazıları ise hem farklılaşmamış hem de farklılaşmış durumlarda hızlı bir azalma gösterdi. Özellikle OFA1, OFA2 ve OFA3 vektörleri, SEW vektörüne benzer eğilimler göstererek zamanla eGFP ekspresyonunda belirgin azalmalar sergiledi. CBX3 kökenli fragmentlerin hiçbiri stabil ekspresyon sağlamadı, bu da UCOE aktivitesinin olmadığını düşündürdü. Ekspresyon azalma hızları, SFFV promotörlü SEW vektörü ile OFA1, OFA2 ve OFA3 içeren LV’ler arasında benzerdi.
Sonuç: CpG zengin, promotör içermeyen fragmanlar fare embriyonal karsinom hücrelerinde stabil transgen ekspresyonunu destekleyememekte, bu da UCOE fonksiyonelliğinin olmadığını göstermektedir. Bulgular, gen terapisi için açık kromatinin korunmasında promotör ve düzenleyici elemanların önemini vurgulamaktadır. Gelecek çalışmalar, transgen stabilitesini artırmak için alternatif CpG zengin bölgeler veya minimal promotörleri araştırmalıdır.

References

  • Neville JJ, Orlando J, Mann K, McCloskey B, Antoniou MN. Ubiquitous chromatin-opening elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol Adv. 2017;35(5):557-64.
  • Griesenbach U, Alton EW. Moving forward: cystic fibrosis gene therapy. Hum Mol Genet. 2013;22(R1):R52-8.
  • Bainbridge JW, Tan MH, Ali RR. Gene therapy progress and prospects: the eye. Gene Ther. 2006;13(16):1191-7.
  • Alexander SL, Linde-Zwirble WT, Werther W, Depperschmidt EE, Wilson LJ, Palanki R, et al. Annual rates of arterial thromboembolic events in Medicare neovascular age-related macular degeneration patients. Ophthalmology. 2007;114(12):2174-8.
  • Vogt VM, Simon MN. Mass determination of Rous sarcoma virus virions by scanning transmission electron microscopy. J Virol. 1999;73(8):7050-5.
  • Bouard D, Alazard-Dany N, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157(2):153-65.
  • Gascón S, Paez-Gomez JA, Díaz-Guerra M, Scheiffele P, Scholl FG. Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J Neurosci Methods. 2008;168(1):104-12.
  • Yee TT, Pasi KJ, Lilley PA, Lee CA. Factor VIII inhibitors in haemophiliacs: a single‐centre experience over 34 years, 1964-97. Br J Haematol. 1999;104(4):909-14.
  • Zaiss AK, Son S, Chang LJ. RNA 3′ readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy. J Virol. 2002;76(14):7209-19.
  • Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther. 2005;16(11):1241-6.
  • Yao S, Sukonnik T, Kean T, Bharadwaj RR, Pasceri P, Ellis J. Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications. Mol Ther. 2004;10(1):27-36.
  • Laker C, Meyer J, Schopen A, Friel J, Heberlein C, Ostertag W, et al. Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation. J Virol. 1998;72(1):339-48.
  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72(12):9873-80.
  • Antoniou MN, Skipper KA, Anakok O. Optimizing retroviral gene expression for effective therapies. Hum Gene Ther. 2013;24(4):363-74.
  • Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490-5.
  • Antoniou M, Harland L, Mustoe T, Williams S, Holdstock J, Yague E, et al. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics. 2003;82(3):269-79.
  • Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M, et al. CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol. 2005;5:17.
  • Lindahl Allen M, Antoniou M. Correlation of DNA methylation with histone modifications across the HNRPA2B1-CBX3 ubiquitously-acting chromatin open element (UCOE). Epigenetics. 2007;2(4):227-36.
  • Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A. Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer. 2020;6(5):392-406.
  • Bhan A, Deb P, Mandal SS. Epigenetic code: Histone modification, gene regulation, and chromatin dynamics. In: Mandal SS, editor. Gene regulation, epigenetics and hormone signaling. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. p.29-58.
  • Scharf AN, Barth TK, Imhof A. Establishment of histone modifications after chromatin assembly. Nucleic Acids Res. 2009;37(15):5032-40.
  • Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12(1):7-18.
  • Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464(7291):1082-6.
  • Zhang F, Frost AR, Blundell MP, Bales O, Antoniou MN, Thrasher AJ. A ubiquitous chromatin opening element (UCOE) confers resistance to DNA methylation-mediated silencing of lentiviral vectors. Mol Ther. 2010;18(9):1640-9.
  • Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood. 2007;110(5):1448-57.
  • Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol. 2012;24(5):580-4.
  • Cavazza A, Moiani A, Mavilio F. Mechanisms of retroviral integration and mutagenesis. Hum Gene Ther. 2013;24(2):119-31.
  • Ott MG, Seger R, Stein S, Siler U, Hoelzer D, Grez M. Advances in the treatment of chronic granulomatous disease by gene therapy. Curr Gene Ther. 2007;7(3):155-61.
  • Aiuti A, Bacchetta R, Seger R, Villa A, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies: Part 2. Curr Opin Immunol. 2012;24(5):585-91.
  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818-23.
  • Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341(6148):1233158.
  • Bosticardo M, Ferrua F, Cavazzana M, Aiuti A. Gene therapy for Wiskott-Aldrich Syndrome. Curr Gene Ther. 2014;14(6):413-21.
  • Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv. 2022;56:107924.
  • Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng. 2023;120(9):2441-59.
  • Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, Tycko J, et al. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst. 2022;13(12):950-73.
  • Sizer RE, White RJ. Use of ubiquitous chromatin opening elements (UCOE) as tools to maintain transgene expression in biotechnology. Comput Struct Biotechnol J. 2022;21:275-83.
  • Fu Y, Han Z, Cheng W, Niu S, Wang T, Wang X. Improvement strategies for transient gene expression in mammalian cells. Appl Microbiol Biotechnol. 2024;108(1):480.
  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484-92.
  • Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood. 2007;110(5):1448-57.
  • Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schübeler D. Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet. 2011;43(11):1091-7.
  • Ma J, Meyer S, Olweus J, Jin C, Yu D. An adjusted droplet digital PCR assay for quantification of vector copy number in CAR-T cell and TCR-T cell products. Immunooncol Technol. 2024;25:101031.
  • Cain JA, Montibus B, Oakey RJ. Intragenic CpG islands and their impact on gene regulation. Front Cell Dev Biol. 2022;10:832348.
  • Sizer RE, White RJ. Use of ubiquitous chromatin opening elements (UCOE) as tools to maintain transgene expression in biotechnology. Comput Struct Biotechnol J. 2022;21:275-83.
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295-304.
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6-21.

Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression

Year 2025, Issue: Early Access
https://doi.org/10.18678/dtfd.1653329

Abstract

Aim: This study aimed to evaluate the ability of CpG-rich subregions within the A2UCOE element, excluding the HNRPA2B1 and CBX3 promoters, to sustain long-term transgene expression in lentiviral systems. These regions are cloned upstream of the spleen focus-forming virus (SFFV) promoter and tested in P19 and F9 cells.
Material and Methods: The study assessed the ubiquitous chromatin opening element (UCOE) activity of three A2UCOE subregions that lack promoters. Using P19 and F9 murine embryonal carcinoma cells, enhanced green fluorescent protein (eGFP) expression stability and durability were examined in undifferentiated and differentiated states. Lentiviral vectors (LVs) containing CpG-rich, promoterless fragments, 455UCOE (OFA1), 527UCOE (OFA2), and 945UCOE (OFA3), were transduced into the cells, and sustained transcriptional activity was analyzed via flow cytometry.
Results: Some vectors sustained eGFP expression, while others exhibited a rapid decline in both undifferentiated and differentiated states. Specifically, the OFA1, OFA2, and OFA3 vectors showed trends similar to the SEW vector, with significant reductions in eGFP expression over time. None of the CBX3-derived fragments provided stable expression, suggesting no UCOE activity. The rates of expression decline were similar between the SEW vector with the SFFV promoter and the LVs containing OFA1, OFA2, and OFA3.
Conclusion: CpG-rich, promoterless fragments failed to support stable transgene expression in murine embryonal carcinoma cells, indicating a lack of UCOE functionality. These findings highlight the role of promoter and regulatory elements in maintaining open chromatin for gene therapy. Future studies should investigate other CpG-rich regions or minimal promoters to improve transgene stability.

References

  • Neville JJ, Orlando J, Mann K, McCloskey B, Antoniou MN. Ubiquitous chromatin-opening elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol Adv. 2017;35(5):557-64.
  • Griesenbach U, Alton EW. Moving forward: cystic fibrosis gene therapy. Hum Mol Genet. 2013;22(R1):R52-8.
  • Bainbridge JW, Tan MH, Ali RR. Gene therapy progress and prospects: the eye. Gene Ther. 2006;13(16):1191-7.
  • Alexander SL, Linde-Zwirble WT, Werther W, Depperschmidt EE, Wilson LJ, Palanki R, et al. Annual rates of arterial thromboembolic events in Medicare neovascular age-related macular degeneration patients. Ophthalmology. 2007;114(12):2174-8.
  • Vogt VM, Simon MN. Mass determination of Rous sarcoma virus virions by scanning transmission electron microscopy. J Virol. 1999;73(8):7050-5.
  • Bouard D, Alazard-Dany N, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol. 2009;157(2):153-65.
  • Gascón S, Paez-Gomez JA, Díaz-Guerra M, Scheiffele P, Scholl FG. Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J Neurosci Methods. 2008;168(1):104-12.
  • Yee TT, Pasi KJ, Lilley PA, Lee CA. Factor VIII inhibitors in haemophiliacs: a single‐centre experience over 34 years, 1964-97. Br J Haematol. 1999;104(4):909-14.
  • Zaiss AK, Son S, Chang LJ. RNA 3′ readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy. J Virol. 2002;76(14):7209-19.
  • Ellis J. Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther. 2005;16(11):1241-6.
  • Yao S, Sukonnik T, Kean T, Bharadwaj RR, Pasceri P, Ellis J. Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications. Mol Ther. 2004;10(1):27-36.
  • Laker C, Meyer J, Schopen A, Friel J, Heberlein C, Ostertag W, et al. Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation. J Virol. 1998;72(1):339-48.
  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72(12):9873-80.
  • Antoniou MN, Skipper KA, Anakok O. Optimizing retroviral gene expression for effective therapies. Hum Gene Ther. 2013;24(4):363-74.
  • Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490-5.
  • Antoniou M, Harland L, Mustoe T, Williams S, Holdstock J, Yague E, et al. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics. 2003;82(3):269-79.
  • Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M, et al. CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol. 2005;5:17.
  • Lindahl Allen M, Antoniou M. Correlation of DNA methylation with histone modifications across the HNRPA2B1-CBX3 ubiquitously-acting chromatin open element (UCOE). Epigenetics. 2007;2(4):227-36.
  • Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A. Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer. 2020;6(5):392-406.
  • Bhan A, Deb P, Mandal SS. Epigenetic code: Histone modification, gene regulation, and chromatin dynamics. In: Mandal SS, editor. Gene regulation, epigenetics and hormone signaling. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. p.29-58.
  • Scharf AN, Barth TK, Imhof A. Establishment of histone modifications after chromatin assembly. Nucleic Acids Res. 2009;37(15):5032-40.
  • Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12(1):7-18.
  • Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464(7291):1082-6.
  • Zhang F, Frost AR, Blundell MP, Bales O, Antoniou MN, Thrasher AJ. A ubiquitous chromatin opening element (UCOE) confers resistance to DNA methylation-mediated silencing of lentiviral vectors. Mol Ther. 2010;18(9):1640-9.
  • Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood. 2007;110(5):1448-57.
  • Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol. 2012;24(5):580-4.
  • Cavazza A, Moiani A, Mavilio F. Mechanisms of retroviral integration and mutagenesis. Hum Gene Ther. 2013;24(2):119-31.
  • Ott MG, Seger R, Stein S, Siler U, Hoelzer D, Grez M. Advances in the treatment of chronic granulomatous disease by gene therapy. Curr Gene Ther. 2007;7(3):155-61.
  • Aiuti A, Bacchetta R, Seger R, Villa A, Cavazzana-Calvo M. Gene therapy for primary immunodeficiencies: Part 2. Curr Opin Immunol. 2012;24(5):585-91.
  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818-23.
  • Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341(6148):1233158.
  • Bosticardo M, Ferrua F, Cavazzana M, Aiuti A. Gene therapy for Wiskott-Aldrich Syndrome. Curr Gene Ther. 2014;14(6):413-21.
  • Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv. 2022;56:107924.
  • Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng. 2023;120(9):2441-59.
  • Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, Tycko J, et al. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst. 2022;13(12):950-73.
  • Sizer RE, White RJ. Use of ubiquitous chromatin opening elements (UCOE) as tools to maintain transgene expression in biotechnology. Comput Struct Biotechnol J. 2022;21:275-83.
  • Fu Y, Han Z, Cheng W, Niu S, Wang T, Wang X. Improvement strategies for transient gene expression in mammalian cells. Appl Microbiol Biotechnol. 2024;108(1):480.
  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484-92.
  • Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood. 2007;110(5):1448-57.
  • Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schübeler D. Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet. 2011;43(11):1091-7.
  • Ma J, Meyer S, Olweus J, Jin C, Yu D. An adjusted droplet digital PCR assay for quantification of vector copy number in CAR-T cell and TCR-T cell products. Immunooncol Technol. 2024;25:101031.
  • Cain JA, Montibus B, Oakey RJ. Intragenic CpG islands and their impact on gene regulation. Front Cell Dev Biol. 2022;10:832348.
  • Sizer RE, White RJ. Use of ubiquitous chromatin opening elements (UCOE) as tools to maintain transgene expression in biotechnology. Comput Struct Biotechnol J. 2022;21:275-83.
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295-304.
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6-21.
There are 45 citations in total.

Details

Primary Language English
Subjects Medical Genetics (Excl. Cancer Genetics), Gene and Molecular Therapy
Journal Section Research Article
Authors

Ali Osman Arslan 0000-0002-5711-0038

Ömer Faruk Anakök 0000-0002-5747-9644

Early Pub Date October 7, 2025
Publication Date October 16, 2025
Submission Date March 7, 2025
Acceptance Date September 12, 2025
Published in Issue Year 2025 Issue: Early Access

Cite

APA Arslan, A. O., & Anakök, Ö. F. (2025). Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression. Duzce Medical Journal(Early Access). https://doi.org/10.18678/dtfd.1653329
AMA Arslan AO, Anakök ÖF. Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression. Duzce Med J. October 2025;(Early Access). doi:10.18678/dtfd.1653329
Chicago Arslan, Ali Osman, and Ömer Faruk Anakök. “Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression”. Duzce Medical Journal, no. Early Access (October 2025). https://doi.org/10.18678/dtfd.1653329.
EndNote Arslan AO, Anakök ÖF (October 1, 2025) Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression. Duzce Medical Journal Early Access
IEEE A. O. Arslan and Ö. F. Anakök, “Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression”, Duzce Med J, no. Early Access, October2025, doi: 10.18678/dtfd.1653329.
ISNAD Arslan, Ali Osman - Anakök, Ömer Faruk. “Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression”. Duzce Medical Journal Early Access (October2025). https://doi.org/10.18678/dtfd.1653329.
JAMA Arslan AO, Anakök ÖF. Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression. Duzce Med J. 2025. doi:10.18678/dtfd.1653329.
MLA Arslan, Ali Osman and Ömer Faruk Anakök. “Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression”. Duzce Medical Journal, no. Early Access, 2025, doi:10.18678/dtfd.1653329.
Vancouver Arslan AO, Anakök ÖF. Impact of Promoter-Independent CpG-Rich A2UCOE Subregions on Transgene Expression. Duzce Med J. 2025(Early Access).