Aspergillus ruber and Aspergillus flavus and Exploring the Cytotoxic Potential of Their Isolated Compounds Using Virtual Screening," Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 8860784, 2021/01/31, doi: 10.1155/2021/8860784." />
Review
BibTex RIS Cite

Bilgisayar Destekli İlaç Keşfi Üzerine Bakışlar

Year 2022, , 405 - 426, 30.12.2022
https://doi.org/10.55007/dufed.1103457

Abstract

İlaç geliştirme ve keşif süreci, hedef molekülün kritik seçiminden klinik sonrası pazar uygulamasına kadar 15 ila 20 yıl süren ve yaklaşık 1,5-2 milyar dolar gerektiren zorlu bir süreçtir. Bu süreçte, biyolojik aktiviteye sahip hedef öncü bileşikleri belirlemek ve optimize etmek için bir dizi hesaplamalı ilaç tasarım yöntemi kullanılır. Son yıllarda ilaç keşif sürecinin karmaşıklığı ve maliyeti göz önüne alındığında, bilgisayar destekli ilaç keşfi (CADD) geniş bir yelpazeye yayılmıştır. Bu gözden geçirme makalesi, ilaç şirketlerinin ve akademik araştırmaların ayrılmaz bir parçası haline gelen SBDD ve LBDD süreçleri de dahil olmak üzere CADD yöntemlerinin ayrıntılarına, amaçlarına, ilaç keşfindeki kullanımlarına, genel iş akışlarına, kullanılan araçlara, sınırlamalara ve geleceğine ilişkin bir genel bakış sunmaktadır.

References

  • A. S. Rifaioglu, H. Atas, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan, "Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases," Briefings in Bioinformatics, vol. 20, no. 5, pp. 1878-1912, 2018, doi: 10.1093/bib/bby061.
  • B. S. Robinson, K. A. Riccardi, Y. F. Gong, Q. Guo, D. A. Stock et al., "BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents," Antimicrobial agents and chemotherapy, vol. 44, no. 8, pp. 2093-2099, 2000.
  • Z. Chen, Y. Li, E. Chen, D. L. Hall, P. L. Darke, C. Culberson, J. A. Shafer, L. C. Kuo, "Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases," Journal of Biological Chemistry, vol. 269, no. 42, pp. 26344-26348, 1994.
  • D. J. Kempf, K. C. Marsh, J. F. Denissen, E. McDonald, S. Vasavanonda, C. A. Flentge, B. E. Green, L. Fino, C. H. Park, X. P. Kong "ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans," Proceedings of the National Academy of Sciences, vol. 92, no. 7, pp. 2484-2488, 1995.
  • A. Krohn, S. Redshaw, J. C. Ritchie, B. J. Graves, and M. H. Hatada, "Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere," Journal of medicinal chemistry, vol. 34, no. 11, pp. 3340-3342, 1991.
  • A. C. Anderson, "The process of structure-based drug design," Chemistry & biology, vol. 10, no. 9, pp. 787-797, 2003.
  • E. E. Rutenber and R. M. Stroud, "Binding of the anticancer drug ZD1694 to E. coli thymidylate synthase: assessing specificity and affinity," Structure, vol. 4, no. 11, pp. 1317-1324, 1996.
  • J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran et al., "Applications of machine learning in drug discovery and development," Nature reviews Drug discovery, vol. 18, no. 6, pp. 463-477, 2019.
  • O. J. Wouters, M. Mckee, and J. Luyten, "Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018," JAMA, vol. 323, no. 9, pp. 844, 2020-03-03, doi: 10.1001/jama.2020.1166.
  • R. C. Mohs and N. H. Greig, "Drug discovery and development: Role of basic biological research," Alzheimer's & Dementia: Translational Research & Clinical Interventions, vol. 3, no. 4, pp. 651-657, 2017/11/01, doi: https://doi.org/10.1016/j.trci.2017.10.005.
  • Z. Omran and C. Rauch, "Acid-mediated Lipinski's second rule: application to drug design and targeting in cancer," (in eng), Eur Biophys J., vol. 43, no. 4-5, pp. 199-206, May 2014, doi: 10.1007/s00249-014-0953-1.
  • C. M. Chagas, S. Moss, and L. Alisaraie, "Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski's Rule of Five," International Journal of Pharmaceutics, vol. 549, no. 1-2, pp. 133-149, 2018-10-01, doi: 10.1016/j.ijpharm.2018.07.046.
  • C. A. Lipinski, "Lead- and drug-like compounds: the rule-of-five revolution," Drug Discovery Today: Technologies, vol. 1, no. 4, pp. 337-341, 2004-12-01, doi: 10.1016/j.ddtec.2004.11.007.
  • M. Congreve, R. Carr, C. Murray, and H. Jhoti, "A 'rule of three' for fragment-based lead discovery?," (in eng), Drug Discov Today, vol. 8, no. 19, pp. 876-7, Oct-1-2003, doi: 10.1016/s1359-6446(03)02831-9.
  • H. Jhoti, G. Williams, D. C. Rees, and C. W. Murray, "The 'rule of three' for fragment-based drug discovery: where are we now?," Nature Reviews Drug Discovery, vol. 12, no. 8, pp. 644-644, 2013-08-01, doi: 10.1038/nrd3926-c1.
  • J. Bajorath, "Computer-aided drug discovery," F1000Research, vol. 4, pp. 630, 2015, doi: 10.12688/f1000research.6653.1.
  • L. Shi and N. Zhang, "Applications of Solution NMR in Drug Discovery," Molecules, vol. 26, no. 3, pp. 576, 2021-01-22, doi: 10.3390/molecules26030576.
  • D. R. Knighton, C. C. Kan, E. Howland, C. A. Janson, Z. Hostomska et al., "Structure of and kinetic channelling in bifunctional dihydrofolate reductase–thymidylate synthase," Nature Structural Biology, vol. 1, no. 3, pp. 186-194, 1994/03/01, doi: 10.1038/nsb0394-186.
  • W. Lu, R. Zhang, H. Jiang, H. Zhang, and C. Luo, "Computer-Aided Drug Design in Epigenetics," (in English), Frontiers in Chemistry, vol. 6, 2018-March-12, doi: 10.3389/fchem.2018.00057.
  • L. A. Caliguiri, J. J. McSharry, and G. W. Lawrence, "Effect of arildone on modifications of poliovirus in vitro," Virology, vol. 105, no. 1, pp. 86-93, 1980/08/01, doi: https://doi.org/10.1016/0042-6822(80)90158-0.
  • C. Mattos, B. Rasmussen, X. Ding, G. A. Petsko, and D. Ringe, "Analogous inhibitors of elastase do not always bind analogously," (in eng), Nat Struct Biol, vol. 1, no. 1, pp. 55-8, Jan 1994, doi: 10.1038/nsb0194-55.
  • M. A. Navia, P. M. Fitzgerald, B. M. McKeever, C. T. Leu, J. C. Heimbach et al., "Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1," (in eng), Nature, vol. 337, no. 6208, pp. 615-20, Feb 16 1989, doi: 10.1038/337615a0.
  • T. Blundell and L. Pearl, "Retroviral proteinases. A second front against AIDS," (in eng), Nature, vol. 337, no. 6208, pp. 596-7, Feb 16 1989, doi: 10.1038/337596a0.
  • M. Jaskolski, Z. Dauter, and A. Wlodawer, "A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits," (in eng), Febs J., vol. 281, no. 18, pp. 3985-4009, Sep 2014, doi: 10.1111/febs.12796.
  • R. L. M. van Montfort and P. Workman, "Structure-based drug design: aiming for a perfect fit," (in eng), Essays Biochem, vol. 61, no. 5, pp. 431-437, Nov. 08.2017, doi: 10.1042/ebc20170052.
  • J. Damborsky and J. Brezovsky, "Computational tools for designing and engineering enzymes," (in eng), Curr Opin Chem Biol, vol. 19, pp. 8-16, Apr. 2014, doi: 10.1016/j.cbpa.2013.12.003.
  • S. Oña Chuquimarca, S. A.-Ruano, J. Goossens, L. Pauwels, A. Goossens et al., "The Molecular Basis of JAZ-MYC Coupling, a Protein-Protein Interface Essential for Plant Response to Stressors," (in English), Frontiers in Plant Science, vol. 11, 2020-August-20, doi: 10.3389/fpls.2020.01139.
  • N. Eswar, D. Eramian, B. Webb, M.-Y. Shen, and A. Sali, "Protein structure modeling with MODELLER," in Structural proteomics: Springer, pp. 145-159, 2008.
  • A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello et al., "SWISS-MODEL: homology modelling of protein structures and complexes," Nucleic acids research, vol. 46, no. W1, pp. W296-W303, 2018.
  • U. Pieper, N. Eswar, H. Braberg, M. S. Madhusudhan, F. P. Davis et al., "MODBASE: a database of annotated comparative protein structure models and associated resources," Nucleic Acids Research, vol. 34, no. suppl_1, pp. D291-D295, 2006, doi: 10.1093/nar/gkj059.
  • L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, "The Phyre2 web portal for protein modeling, prediction and analysis," Nature protocols, vol. 10, no. 6, pp. 845-858, 2015.
  • X. H. Ma, J. Jia, F. Zhu, Y. Xue, Z. R. Li, and Y. Z. Chen, "Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries," Combinatorial chemistry & high throughput screening, vol. 12, no. 4, pp. 344-357, 2009.
  • F. S. Youssef and A. N. B. Singab, "An Updated Review on the Secondary Metabolites and Biological Activities of <i>Aspergillus ruber</i> and <i>Aspergillus flavus</i> and Exploring the Cytotoxic Potential of Their Isolated Compounds Using Virtual Screening," Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 8860784, 2021/01/31, doi: 10.1155/2021/8860784.
  • M. A. Gani, A. D. Nurhan, S. Maulana, S. Siswodihardjo, D. W. Shinta, and J. Khotib, "Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2," (in eng), J Adv Pharm Technol Res, vol. 12, no. 2, pp. 120-126, Apr-Jun 2021, doi: 10.4103/japtr.JAPTR_88_21.
  • S. -K. Liu, H. Hao, Y. Bian, Y.-X. Ge, S. Lu et al., "Discovery of New α-Glucosidase Inhibitors: Structure-Based Virtual Screening and Biological Evaluation," (in English), Frontiers in Chemistry, vol. 9, 08.March.2021, doi: 10.3389/fchem.2021.639279.
  • F. Sabanés Zariquiey, E. Jacoby, A. Vos, H. W. T. van Vlijmen, G. Tresadern, and J. Harvey, "Divide and Conquer. Pocket-Opening Mixed-Solvent Simulations in the Perspective of Docking Virtual Screening Applications for Drug Discovery," Journal of Chemical Information and Modeling, vol. 62, no. 3, pp. 533-543, 2022/02/14, doi: 10.1021/acs.jcim.1c01164.
  • M. J. Wasko, K. A. Pellegrene, J. D. Madura, and C. K. Surratt, "A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets," (in English), Frontiers in Neurology, vol. 6, 2015-September-11, doi: 10.3389/fneur.2015.00197.
  • C. Hansch and T. Fujita, "p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure," Journal of the American Chemical Society, vol. 86, no. 8, pp. 1616-1626, 1964/04/01, doi: 10.1021/ja01062a035.
  • G. B. Goh, N. O. Hodas, and A. Vishnu, "Deep learning for computational chemistry," (in eng), J Comput Chem, vol. 38, no. 16, pp. 1291-1307, 15. Jun. 2017, doi: 10.1002/jcc.24764.
  • C.-P. Chen, C.-C. Chen, C.-W. Huang, and Y.-C. Chang, "Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability," Molecules, vol. 23, no. 4, pp. 911, 2018. [Online]. Available: https://www.mdpi.com/1420-3049/23/4/911.
  • V. M. Alves, T. Bobrowski, C. C. M.-Filho, D. Korn, S. Auerbach et al., "QSAR Modeling of SARS-CoV M(pro) Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS-CoV-2," (in eng), Mol Inform, vol. 40, no. 1, pp. e2000113, Jan 2021, doi: 10.1002/minf.202000113.
  • I. Hammoudan, S. Matchi, M. Bakhouch, S. Belaidi, and S. Chtita, "QSAR Modelling of Peptidomimetic Derivatives towards HKU4-CoV 3CLpro Inhibitors against MERS-CoV," Chemistry, vol. 3, no. 1, pp. 391-401, 2021. [Online]. Available: https://www.mdpi.com/2624-8549/3/1/29.
  • Y. Ding, M. Chen, C. Guo, P. Zhang, and J. Wang, "Molecular fingerprint-based machine learning assisted QSAR model development for prediction of ionic liquid properties," Journal of Molecular Liquids, vol. 326, pp. 115212, 2021/03/15, doi: https://doi.org/10.1016/j.molliq.2020.115212.
  • Z. Wang, J. Chen, and H. Hong, "Developing QSAR Models with Defined Applicability Domains on PPARγ Binding Affinity Using Large Data Sets and Machine Learning Algorithms," Environmental Science & Technology, vol. 55, no. 10, pp. 6857-6866, 2021/05/18, doi: 10.1021/acs.est.0c07040.
  • M. Veit-Acosta and W. F. de Azevedo Junior, "Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery," Current Medicinal Chemistry, vol. 29, no. 14, pp. 2438-2455, 2022, doi: 10.2174/0929867328666210806105810.
  • S. E. Adeniji, A. Ajala, and O. I. Areguamen, "QSAR Based Pharmacophore Modeling, Design, Molecular Simulation and Computational ADME/Pharmacokinetics Validation," Research Square Platform LLC, 2022.
  • N. Chen, J. Chen, B. Yao, and Z. Li, "QSAR Study on Antioxidant Tripeptides and the Antioxidant Activity of the Designed Tripeptides in Free Radical Systems," (in eng), Molecules (Basel, Switzerland), vol. 23, no. 6, pp. 1407, 2018, doi: 10.3390/molecules23061407.
  • Y. Hu, D. Stumpfe, and J. Bajorath, "Recent Advances in Scaffold Hopping," Journal of Medicinal Chemistry, vol. 60, no. 4, pp. 1238-1246, 2017/02/23, doi: 10.1021/acs.jmedchem.6b01437.
  • X. Xiao, M. Lai, Z. Song, M. Geng, J. Ding et al., "Design, synthesis and pharmacological evaluation of bicyclic and tetracyclic pyridopyrimidinone analogues as new KRAS(G12C) inhibitors," (in eng), Eur J Med Chem, vol. 213, pp. 113082, 05.Mar.2021, doi: 10.1016/j.ejmech.2020.113082.
  • S. Zheng, Z. Lei, H. Ai, H. Chen, D. Deng, and Y. Yang, "Deep scaffold hopping with multimodal transformer neural networks," Journal of Cheminformatics, vol. 13, no. 1, pp. 87, 2021/11/13, doi: 10.1186/s13321-021-00565-5.
  • S. Y. Yang, "Pharmacophore modeling and applications in drug discovery: challenges and recent advances," (in eng), Drug Discov Today, vol. 15, no. 11-12, pp. 444-50, Jun 2010, doi: 10.1016/j.drudis.2010.03.013.
  • D. Charych, S. Khalili, V. Dixit, P. Kirk, T. Chang et al., "Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy," (in eng), PLoS One, vol. 12, no. 7, pp. e0179431, 2017, doi: 10.1371/journal.pone.0179431.
  • S. P. Kumar and P. C. Jha, "Multi-level structure-based pharmacophore modelling of caspase-3-non-peptide complexes: Extracting essential pharmacophore features and its application to virtual screening," Chemico-Biological Interactions, vol. 254, pp. 207-220, 2016/07/25, doi: https://doi.org/10.1016/j.cbi.2016.06.011.
  • A. Vedani, P. Zbinden, and J. P. Snyder, "Pseudo-receptor modeling: a new concept for the three-dimensional construction of receptor binding sites," (in eng), J Recept Res, vol. 13, no. 1-4, pp. 163-77, 1993, doi: 10.3109/10799899309073653.
  • B. Shaker, S. Ahmad, J. Lee, C. Jung, and D. Na, "In silico methods and tools for drug discovery," Computers in Biology and Medicine, vol. 137, pp. 104851, 2021-10-01, doi: 10.1016/j.compbiomed.2021.104851.
  • Y. Y. Syed, "Selinexor: first global approval," Drugs, vol. 79, no. 13, pp. 1485-1494, 2019.
  • Y. Y. Syed, "Zanubrutinib: first approval," Drugs, vol. 80, no. 1, pp. 91-97, 2020.
  • A. Markham, "Erdafitinib: first global approval," Drugs, vol. 79, no. 9, pp. 1017-1021, 2019.
  • H. M. Bryson and E. M. Sorkin, "Cladribine," Drugs, vol. 46, no. 5, pp. 872-894, 1993/11/01, doi: 10.2165/00003495-199346050-00007.
  • Z. T. Al-Salama, "Apalutamide: a review in non-metastatic castration-resistant prostate cancer," Drugs, vol. 79, no. 14, pp. 1591-1598, 2019.
  • J. Dai, W. Dan, N. Li, and J. Wang, "Computer-aided drug discovery: Novel 3, 9-disubstituted eudistomin U derivatives as potent antibacterial agents," European Journal of Medicinal Chemistry, vol. 157, pp. 333-338, 2018.
  • M. K. Tripathi, A. Nath, T. P. Singh, A. S. Ethayathulla, and P. Kaur, "Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery," Molecular Diversity, vol. 25, no. 3, pp. 1439-1460, 2021/08/01, doi: 10.1007/s11030-021-10256-w.
  • J. Jiménez-Luna, F. Grisoni, and G. Schneider, "Drug discovery with explainable artificial intelligence," Nature Machine Intelligence, vol. 2, no. 10, pp. 573-584, 2020/10/01, doi: 10.1038/s42256-020-00236-4.
  • B. Iswarya and K. Manimekalai, "Drug Discovery With XAI Using Deep Learning," in Principles and Methods of Explainable Artificial Intelligence in Healthcare, V. H. C. d. Albuquerque, P. N. Srinivasu, A. K. Bhoi, and A. G. l. Briones Eds. Hershey, PA, USA: IGI Global, pp. 131-149, 2022.

Perspectives on Computer Aided Drug Discovery

Year 2022, , 405 - 426, 30.12.2022
https://doi.org/10.55007/dufed.1103457

Abstract

The drug development and discovery process are challenging, take 15 to 20 years, and require approximately 1.5-2 billion dollars, from the critical selection of the target molecule to post-clinical market application. Several computational drug design methods identify and optimize target biologically lead compounds. Given the complexity and cost of the drug discovery process in recent years, computer-assisted drug discovery (CADD) has spread over a broad spectrum. CADD methods support the discovery of target molecules, optimization of small target molecules, analysis, and development processes faster and less costly. These methods can be classified into structure-based (SBDD) and ligand-based (LBDD). SBDD begins the development process by focusing on the knowledge of the three-dimensional structure of the biological target. Finally, this review article provides an overview of the details, purposes, uses in developing drugs, general workflows, tools used, limitations, and future of CADD methods, including the SBDD and LBDD processes that have become an integral part of pharmaceutical companies and academic research.

References

  • A. S. Rifaioglu, H. Atas, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan, "Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases," Briefings in Bioinformatics, vol. 20, no. 5, pp. 1878-1912, 2018, doi: 10.1093/bib/bby061.
  • B. S. Robinson, K. A. Riccardi, Y. F. Gong, Q. Guo, D. A. Stock et al., "BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents," Antimicrobial agents and chemotherapy, vol. 44, no. 8, pp. 2093-2099, 2000.
  • Z. Chen, Y. Li, E. Chen, D. L. Hall, P. L. Darke, C. Culberson, J. A. Shafer, L. C. Kuo, "Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases," Journal of Biological Chemistry, vol. 269, no. 42, pp. 26344-26348, 1994.
  • D. J. Kempf, K. C. Marsh, J. F. Denissen, E. McDonald, S. Vasavanonda, C. A. Flentge, B. E. Green, L. Fino, C. H. Park, X. P. Kong "ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans," Proceedings of the National Academy of Sciences, vol. 92, no. 7, pp. 2484-2488, 1995.
  • A. Krohn, S. Redshaw, J. C. Ritchie, B. J. Graves, and M. H. Hatada, "Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere," Journal of medicinal chemistry, vol. 34, no. 11, pp. 3340-3342, 1991.
  • A. C. Anderson, "The process of structure-based drug design," Chemistry & biology, vol. 10, no. 9, pp. 787-797, 2003.
  • E. E. Rutenber and R. M. Stroud, "Binding of the anticancer drug ZD1694 to E. coli thymidylate synthase: assessing specificity and affinity," Structure, vol. 4, no. 11, pp. 1317-1324, 1996.
  • J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran et al., "Applications of machine learning in drug discovery and development," Nature reviews Drug discovery, vol. 18, no. 6, pp. 463-477, 2019.
  • O. J. Wouters, M. Mckee, and J. Luyten, "Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018," JAMA, vol. 323, no. 9, pp. 844, 2020-03-03, doi: 10.1001/jama.2020.1166.
  • R. C. Mohs and N. H. Greig, "Drug discovery and development: Role of basic biological research," Alzheimer's & Dementia: Translational Research & Clinical Interventions, vol. 3, no. 4, pp. 651-657, 2017/11/01, doi: https://doi.org/10.1016/j.trci.2017.10.005.
  • Z. Omran and C. Rauch, "Acid-mediated Lipinski's second rule: application to drug design and targeting in cancer," (in eng), Eur Biophys J., vol. 43, no. 4-5, pp. 199-206, May 2014, doi: 10.1007/s00249-014-0953-1.
  • C. M. Chagas, S. Moss, and L. Alisaraie, "Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski's Rule of Five," International Journal of Pharmaceutics, vol. 549, no. 1-2, pp. 133-149, 2018-10-01, doi: 10.1016/j.ijpharm.2018.07.046.
  • C. A. Lipinski, "Lead- and drug-like compounds: the rule-of-five revolution," Drug Discovery Today: Technologies, vol. 1, no. 4, pp. 337-341, 2004-12-01, doi: 10.1016/j.ddtec.2004.11.007.
  • M. Congreve, R. Carr, C. Murray, and H. Jhoti, "A 'rule of three' for fragment-based lead discovery?," (in eng), Drug Discov Today, vol. 8, no. 19, pp. 876-7, Oct-1-2003, doi: 10.1016/s1359-6446(03)02831-9.
  • H. Jhoti, G. Williams, D. C. Rees, and C. W. Murray, "The 'rule of three' for fragment-based drug discovery: where are we now?," Nature Reviews Drug Discovery, vol. 12, no. 8, pp. 644-644, 2013-08-01, doi: 10.1038/nrd3926-c1.
  • J. Bajorath, "Computer-aided drug discovery," F1000Research, vol. 4, pp. 630, 2015, doi: 10.12688/f1000research.6653.1.
  • L. Shi and N. Zhang, "Applications of Solution NMR in Drug Discovery," Molecules, vol. 26, no. 3, pp. 576, 2021-01-22, doi: 10.3390/molecules26030576.
  • D. R. Knighton, C. C. Kan, E. Howland, C. A. Janson, Z. Hostomska et al., "Structure of and kinetic channelling in bifunctional dihydrofolate reductase–thymidylate synthase," Nature Structural Biology, vol. 1, no. 3, pp. 186-194, 1994/03/01, doi: 10.1038/nsb0394-186.
  • W. Lu, R. Zhang, H. Jiang, H. Zhang, and C. Luo, "Computer-Aided Drug Design in Epigenetics," (in English), Frontiers in Chemistry, vol. 6, 2018-March-12, doi: 10.3389/fchem.2018.00057.
  • L. A. Caliguiri, J. J. McSharry, and G. W. Lawrence, "Effect of arildone on modifications of poliovirus in vitro," Virology, vol. 105, no. 1, pp. 86-93, 1980/08/01, doi: https://doi.org/10.1016/0042-6822(80)90158-0.
  • C. Mattos, B. Rasmussen, X. Ding, G. A. Petsko, and D. Ringe, "Analogous inhibitors of elastase do not always bind analogously," (in eng), Nat Struct Biol, vol. 1, no. 1, pp. 55-8, Jan 1994, doi: 10.1038/nsb0194-55.
  • M. A. Navia, P. M. Fitzgerald, B. M. McKeever, C. T. Leu, J. C. Heimbach et al., "Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1," (in eng), Nature, vol. 337, no. 6208, pp. 615-20, Feb 16 1989, doi: 10.1038/337615a0.
  • T. Blundell and L. Pearl, "Retroviral proteinases. A second front against AIDS," (in eng), Nature, vol. 337, no. 6208, pp. 596-7, Feb 16 1989, doi: 10.1038/337596a0.
  • M. Jaskolski, Z. Dauter, and A. Wlodawer, "A brief history of macromolecular crystallography, illustrated by a family tree and its Nobel fruits," (in eng), Febs J., vol. 281, no. 18, pp. 3985-4009, Sep 2014, doi: 10.1111/febs.12796.
  • R. L. M. van Montfort and P. Workman, "Structure-based drug design: aiming for a perfect fit," (in eng), Essays Biochem, vol. 61, no. 5, pp. 431-437, Nov. 08.2017, doi: 10.1042/ebc20170052.
  • J. Damborsky and J. Brezovsky, "Computational tools for designing and engineering enzymes," (in eng), Curr Opin Chem Biol, vol. 19, pp. 8-16, Apr. 2014, doi: 10.1016/j.cbpa.2013.12.003.
  • S. Oña Chuquimarca, S. A.-Ruano, J. Goossens, L. Pauwels, A. Goossens et al., "The Molecular Basis of JAZ-MYC Coupling, a Protein-Protein Interface Essential for Plant Response to Stressors," (in English), Frontiers in Plant Science, vol. 11, 2020-August-20, doi: 10.3389/fpls.2020.01139.
  • N. Eswar, D. Eramian, B. Webb, M.-Y. Shen, and A. Sali, "Protein structure modeling with MODELLER," in Structural proteomics: Springer, pp. 145-159, 2008.
  • A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello et al., "SWISS-MODEL: homology modelling of protein structures and complexes," Nucleic acids research, vol. 46, no. W1, pp. W296-W303, 2018.
  • U. Pieper, N. Eswar, H. Braberg, M. S. Madhusudhan, F. P. Davis et al., "MODBASE: a database of annotated comparative protein structure models and associated resources," Nucleic Acids Research, vol. 34, no. suppl_1, pp. D291-D295, 2006, doi: 10.1093/nar/gkj059.
  • L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, "The Phyre2 web portal for protein modeling, prediction and analysis," Nature protocols, vol. 10, no. 6, pp. 845-858, 2015.
  • X. H. Ma, J. Jia, F. Zhu, Y. Xue, Z. R. Li, and Y. Z. Chen, "Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries," Combinatorial chemistry & high throughput screening, vol. 12, no. 4, pp. 344-357, 2009.
  • F. S. Youssef and A. N. B. Singab, "An Updated Review on the Secondary Metabolites and Biological Activities of <i>Aspergillus ruber</i> and <i>Aspergillus flavus</i> and Exploring the Cytotoxic Potential of Their Isolated Compounds Using Virtual Screening," Evidence-Based Complementary and Alternative Medicine, vol. 2021, pp. 8860784, 2021/01/31, doi: 10.1155/2021/8860784.
  • M. A. Gani, A. D. Nurhan, S. Maulana, S. Siswodihardjo, D. W. Shinta, and J. Khotib, "Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2," (in eng), J Adv Pharm Technol Res, vol. 12, no. 2, pp. 120-126, Apr-Jun 2021, doi: 10.4103/japtr.JAPTR_88_21.
  • S. -K. Liu, H. Hao, Y. Bian, Y.-X. Ge, S. Lu et al., "Discovery of New α-Glucosidase Inhibitors: Structure-Based Virtual Screening and Biological Evaluation," (in English), Frontiers in Chemistry, vol. 9, 08.March.2021, doi: 10.3389/fchem.2021.639279.
  • F. Sabanés Zariquiey, E. Jacoby, A. Vos, H. W. T. van Vlijmen, G. Tresadern, and J. Harvey, "Divide and Conquer. Pocket-Opening Mixed-Solvent Simulations in the Perspective of Docking Virtual Screening Applications for Drug Discovery," Journal of Chemical Information and Modeling, vol. 62, no. 3, pp. 533-543, 2022/02/14, doi: 10.1021/acs.jcim.1c01164.
  • M. J. Wasko, K. A. Pellegrene, J. D. Madura, and C. K. Surratt, "A Role for Fragment-Based Drug Design in Developing Novel Lead Compounds for Central Nervous System Targets," (in English), Frontiers in Neurology, vol. 6, 2015-September-11, doi: 10.3389/fneur.2015.00197.
  • C. Hansch and T. Fujita, "p-σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure," Journal of the American Chemical Society, vol. 86, no. 8, pp. 1616-1626, 1964/04/01, doi: 10.1021/ja01062a035.
  • G. B. Goh, N. O. Hodas, and A. Vishnu, "Deep learning for computational chemistry," (in eng), J Comput Chem, vol. 38, no. 16, pp. 1291-1307, 15. Jun. 2017, doi: 10.1002/jcc.24764.
  • C.-P. Chen, C.-C. Chen, C.-W. Huang, and Y.-C. Chang, "Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Quantitative Structure-Activity Relationship for Skin Permeability," Molecules, vol. 23, no. 4, pp. 911, 2018. [Online]. Available: https://www.mdpi.com/1420-3049/23/4/911.
  • V. M. Alves, T. Bobrowski, C. C. M.-Filho, D. Korn, S. Auerbach et al., "QSAR Modeling of SARS-CoV M(pro) Inhibitors Identifies Sufugolix, Cenicriviroc, Proglumetacin, and other Drugs as Candidates for Repurposing against SARS-CoV-2," (in eng), Mol Inform, vol. 40, no. 1, pp. e2000113, Jan 2021, doi: 10.1002/minf.202000113.
  • I. Hammoudan, S. Matchi, M. Bakhouch, S. Belaidi, and S. Chtita, "QSAR Modelling of Peptidomimetic Derivatives towards HKU4-CoV 3CLpro Inhibitors against MERS-CoV," Chemistry, vol. 3, no. 1, pp. 391-401, 2021. [Online]. Available: https://www.mdpi.com/2624-8549/3/1/29.
  • Y. Ding, M. Chen, C. Guo, P. Zhang, and J. Wang, "Molecular fingerprint-based machine learning assisted QSAR model development for prediction of ionic liquid properties," Journal of Molecular Liquids, vol. 326, pp. 115212, 2021/03/15, doi: https://doi.org/10.1016/j.molliq.2020.115212.
  • Z. Wang, J. Chen, and H. Hong, "Developing QSAR Models with Defined Applicability Domains on PPARγ Binding Affinity Using Large Data Sets and Machine Learning Algorithms," Environmental Science & Technology, vol. 55, no. 10, pp. 6857-6866, 2021/05/18, doi: 10.1021/acs.est.0c07040.
  • M. Veit-Acosta and W. F. de Azevedo Junior, "Computational Prediction of Binding Affinity for CDK2-ligand Complexes. A Protein Target for Cancer Drug Discovery," Current Medicinal Chemistry, vol. 29, no. 14, pp. 2438-2455, 2022, doi: 10.2174/0929867328666210806105810.
  • S. E. Adeniji, A. Ajala, and O. I. Areguamen, "QSAR Based Pharmacophore Modeling, Design, Molecular Simulation and Computational ADME/Pharmacokinetics Validation," Research Square Platform LLC, 2022.
  • N. Chen, J. Chen, B. Yao, and Z. Li, "QSAR Study on Antioxidant Tripeptides and the Antioxidant Activity of the Designed Tripeptides in Free Radical Systems," (in eng), Molecules (Basel, Switzerland), vol. 23, no. 6, pp. 1407, 2018, doi: 10.3390/molecules23061407.
  • Y. Hu, D. Stumpfe, and J. Bajorath, "Recent Advances in Scaffold Hopping," Journal of Medicinal Chemistry, vol. 60, no. 4, pp. 1238-1246, 2017/02/23, doi: 10.1021/acs.jmedchem.6b01437.
  • X. Xiao, M. Lai, Z. Song, M. Geng, J. Ding et al., "Design, synthesis and pharmacological evaluation of bicyclic and tetracyclic pyridopyrimidinone analogues as new KRAS(G12C) inhibitors," (in eng), Eur J Med Chem, vol. 213, pp. 113082, 05.Mar.2021, doi: 10.1016/j.ejmech.2020.113082.
  • S. Zheng, Z. Lei, H. Ai, H. Chen, D. Deng, and Y. Yang, "Deep scaffold hopping with multimodal transformer neural networks," Journal of Cheminformatics, vol. 13, no. 1, pp. 87, 2021/11/13, doi: 10.1186/s13321-021-00565-5.
  • S. Y. Yang, "Pharmacophore modeling and applications in drug discovery: challenges and recent advances," (in eng), Drug Discov Today, vol. 15, no. 11-12, pp. 444-50, Jun 2010, doi: 10.1016/j.drudis.2010.03.013.
  • D. Charych, S. Khalili, V. Dixit, P. Kirk, T. Chang et al., "Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy," (in eng), PLoS One, vol. 12, no. 7, pp. e0179431, 2017, doi: 10.1371/journal.pone.0179431.
  • S. P. Kumar and P. C. Jha, "Multi-level structure-based pharmacophore modelling of caspase-3-non-peptide complexes: Extracting essential pharmacophore features and its application to virtual screening," Chemico-Biological Interactions, vol. 254, pp. 207-220, 2016/07/25, doi: https://doi.org/10.1016/j.cbi.2016.06.011.
  • A. Vedani, P. Zbinden, and J. P. Snyder, "Pseudo-receptor modeling: a new concept for the three-dimensional construction of receptor binding sites," (in eng), J Recept Res, vol. 13, no. 1-4, pp. 163-77, 1993, doi: 10.3109/10799899309073653.
  • B. Shaker, S. Ahmad, J. Lee, C. Jung, and D. Na, "In silico methods and tools for drug discovery," Computers in Biology and Medicine, vol. 137, pp. 104851, 2021-10-01, doi: 10.1016/j.compbiomed.2021.104851.
  • Y. Y. Syed, "Selinexor: first global approval," Drugs, vol. 79, no. 13, pp. 1485-1494, 2019.
  • Y. Y. Syed, "Zanubrutinib: first approval," Drugs, vol. 80, no. 1, pp. 91-97, 2020.
  • A. Markham, "Erdafitinib: first global approval," Drugs, vol. 79, no. 9, pp. 1017-1021, 2019.
  • H. M. Bryson and E. M. Sorkin, "Cladribine," Drugs, vol. 46, no. 5, pp. 872-894, 1993/11/01, doi: 10.2165/00003495-199346050-00007.
  • Z. T. Al-Salama, "Apalutamide: a review in non-metastatic castration-resistant prostate cancer," Drugs, vol. 79, no. 14, pp. 1591-1598, 2019.
  • J. Dai, W. Dan, N. Li, and J. Wang, "Computer-aided drug discovery: Novel 3, 9-disubstituted eudistomin U derivatives as potent antibacterial agents," European Journal of Medicinal Chemistry, vol. 157, pp. 333-338, 2018.
  • M. K. Tripathi, A. Nath, T. P. Singh, A. S. Ethayathulla, and P. Kaur, "Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery," Molecular Diversity, vol. 25, no. 3, pp. 1439-1460, 2021/08/01, doi: 10.1007/s11030-021-10256-w.
  • J. Jiménez-Luna, F. Grisoni, and G. Schneider, "Drug discovery with explainable artificial intelligence," Nature Machine Intelligence, vol. 2, no. 10, pp. 573-584, 2020/10/01, doi: 10.1038/s42256-020-00236-4.
  • B. Iswarya and K. Manimekalai, "Drug Discovery With XAI Using Deep Learning," in Principles and Methods of Explainable Artificial Intelligence in Healthcare, V. H. C. d. Albuquerque, P. N. Srinivasu, A. K. Bhoi, and A. G. l. Briones Eds. Hershey, PA, USA: IGI Global, pp. 131-149, 2022.
There are 64 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Review Article
Authors

Kevser Kübra Kırboğa 0000-0002-2917-8860

Ecir Küçüksille 0000-0002-3293-9878

Publication Date December 30, 2022
Submission Date April 14, 2022
Published in Issue Year 2022

Cite

IEEE K. K. Kırboğa and E. Küçüksille, “Perspectives on Computer Aided Drug Discovery”, DÜFED, vol. 11, no. 2, pp. 405–426, 2022, doi: 10.55007/dufed.1103457.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx