Review
BibTex RIS Cite

Organotipik Beyin Kesitleri Kullanımının Nörobiyolojik Çalışmalardaki Yeri

Year 2021, Volume: 10 Issue: 1, 95 - 107, 10.06.2021

Abstract

Organotipik beyin kesit kültürleri günümüzde nörobiyoloji araştırmalarında rutin bir protokol haline gelmiştir. Beyin kesit kültürü tekniklerindeki ilerleme sayesinde birçok beyin hastalığı patofizyolojisinin in vivo duruma çok yakın bir şekilde doku bağlamında incelenmesi fırsatı doğmuştur. In vivo çalışmalarda anesteziklerin ve kas gevşetici maddelerin uzun süreli kullanımına alternatif olması yanında hücre kültürlerinin ve homojenatlarının aksine yapısal bütünlüğünü sürdürebilmesi gibi avantajlar sunarken bu kültür ortamı bazı dezavantajları da beraberinde getirmektedir. Bu derleme çalışması boyunca beyin kesit kültürü teknolojisi avantajları ve dezavantajları ile birlikte ele alınarak nörobiyoloji çalışmalarındaki yeri incelenmiştir. Hücresel bütünlüğün korunduğu bu sistemlerin nörodejenerasyon, nörogenez, nörotoksisite gibi birçok alanda in vitro hücre kültürü ve in vivo deney hayvanı çalışmalarına kıyasla çok daha verimli ve kullanışlıdır.

References

  • D. D. Clarke and L. Sokoloff, Circulation and energy metabolism of the brain. In: Sigel GJ, Agrano BW, Albers RW, Fisher SK and Uhler MD (eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Philadelphia, Lippincott-Raven, 1999, pp. 637-669.
  • M. E. Raichle and M. A. Mintun, “Brain work and brain imaging”, Annu Rev Neurosci, no. 29, pp. 449–476, 2006, doi: 10.1146/annurev.neuro.29.051605.112819.
  • G. N. Elston and J. DeFelipe, “Spine distribution in cortical pyramidal cells: a common organizational principle across species” Prog. Brain Res, no. 136, pp. 109–133, 2002, doi: 10.1016/s0079-6123(02)36012-6.
  • G. N. Elston, R. Benavides-Piccione, and J. DeFelipe, “The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey,” Journal Neurosci, vol. 21, no. 17, pp. RC163–RC163, Sep. 2001, doi: https://doi.org/10.1523/JNEUROSCI.21-17-j0002.2001.
  • T. Branco and M. Häusser, “Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites,” Neuron, vol. 69, no. 5, pp. 885–892, Mar. 2011, doi: 10.1016/j.neuron. 2011.02.006.
  • P. Somogyi, G. Tamás, R. Lujan, and E. H. Buhl, “Salient features of synaptic organisation in the cerebral cortex1Published on the World Wide Web on 3 March 1998.1,” Brain Res Rev, vol. 26, no. 2–3, pp. 113–135, May 1998, doi: 10.1016/s0165-0173(97)00061-1.
  • S. M. Crain, B. Crain, and E. R. Peterson, “Development of cross-tolerance to 5-hydroxytryptamine in organotypic cultures of mouse spinal cord-ganglia during chronic exposure to morphine,” Life Sci, vol. 31, no. 3, pp. 241–247, Jul. 1982, doi: 10.1016/0024-3205(82)90584-7.
  • B. H. Gähwiler and F. Hefti, “Guidance of acetylcholinesterase-containing fibres by target tissue in co-cultured brain slices,” Neurosci, vol. 13, no. 3, pp. 681–689, Nov. 1984.
  • L. Stoppini, P.-A. Buchs, and D. Muller, “A simple method for organotypic cultures of nervous tissue,” J. Neurosci. Methods, vol. 37, no. 2, pp. 173–182, Apr. 1991, doi: 10.1016/0165-0270(91)90128-m.
  • P. A. Buchs, L. Stoppini, and D. Muller, “Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures,” Brain Res. Dev. Brain Res, vol. 71, no. 1, pp. 81–91, Jan. 1993, doi: 10.1016/0165-3806(93)90108-m.
  • K. Ostergaard, J. P. Schou, and J. Zimmer, “Rat ventral mesencephalon grown as organotypic slice cultures and co-cultured with striatum, hippocampus, and cerebellum,” Exp. Brain Res, vol. 82, no. 3, Nov. 1990, doi: 10.1007/BF00228796.
  • K. Ostergaard, “Organotypic slice cultures of the rat striatum—I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA,” Neurosci, vol. 53, no. 3, pp. 679–693, Apr. 1993, doi: 10.1016/0306-4522(93)90616-n.
  • B. H. Gähwiler, L. Rietschin, T. Knöpfel, and A. Enz, “Continuous presence of nerve growth factor is required for maintenance of cholinergic septal neurons in organotypic slice cultures,” Neurosci, vol. 36, no. 1, pp. 27–31, Jan. 1990, doi: 10.1016/0306-4522(90)90348-8.
  • R. Robertson, J. Baratta, G. Kageyama, D. Ha, and J. Yu, “Specificity of attachment and neurite outgrowth of dissociated basal forebrain cholinergic neurons seeded on to organotypic slice cultures of forebrain,” Neurosci, vol. 80, no. 3, pp. 741–752, Jul. 1997, doi: 10.1016/s0306-4522(97)00067-5.
  • L. Sundstrom, A. Pringle, B. Morrison, and M. Bradley, “Organotypic cultures as tools for functional screening in the CNS,” Drug Discov, vol. 10, no. 14, pp. 993–1000, Jul. 2005, doi: 10.1016/S1359-6446(05)03502-6.
  • B. Drexler, H. Hentschke, B. Antkowiak, and C. Grasshoff, “Organotypic Cultures as Tools for Testing Neuroactive Drugs – Link Between In-Vitro and In-Vivo Experiments,” Curr. Med. Chem, vol. 17, no. 36, pp. 4538–4550, Dec. 2010, doi: 10.2174/092986710794183042.
  • J. Noraberg, “Organotypic Brain Slice Cultures: An Efficient and Reliable Method for Neurotoxicological Screening and Mechanistic Studies,” ATLA, vol. 32, no. 4, pp. 329–337, Oct. 2004, doi: 10.1177/026119290403200403.
  • M.V. Ravi, K. Joseph, J. Wurm, S. Behringer, N. Garrelfs, P. d’Errico, Y. Naseri, P. Franco, M. Meyer-Leuhmann, R. Sankowski, M.J. Shah, I. Mader, D. Delev, M. Follo, J. Beck, O. Schnell, U.G. Hofmann U.G and D.H. Heiland, “Human organotypic brain slice culture: a novel framework for environmental research in neuro-oncology,” Life Sci. Alliance, vol. 2, no. 4, e201900305, 2019, doi: 10.26508/lsa.201900305.
  • C. L. Croft and W. Noble, “Preparation of organotypic brain slice cultures for the study of Alzheimer's disease,” F1000 Res, vol. 7, pp. 592, 2018, doi: 10.12688/f1000research. 14500.2.
  • B. A. Bahr, “Long-term hippocampal slices: A model system for investigating synaptic mechanisms and pathologic processes,” J. Neurosci. Res, vol. 42, no. 3, pp. 294–305, Oct. 1995, doi: 10.1002/jnr.490420303.
  • A. Simoni, C. B. Griesinger and F. A. Edwards, “Development of Rat CA1 Neurones in Acute Versus Organotypic Slices: Role of Experience in Synaptic Morphology and Activity,” J. Physiol, vol. 550, no. 1, pp. 135–147, Jul. 2003, doi: 10.1113/jphysiol. 2003.039099.
  • A. İrem Lütfiye, “nAChR α7’nin Sinaptik Plastisite Üzerine Etkilerinin Olfaktör Bulbus Ve Hippokampus Organotipik Kesit Kültürlerinde İncelenmesi,” Doktora Tezi, İstanbul Üniversitesi, 2018.
  • B. Gähwiler, “Organotypic slice cultures: a technique has come of age,” Trends Neurosci, vol. 20, no. 10, pp. 471–477, Oct. 1997, doi: 10.1113/jphysiol.2003.039099.
  • J. G. Mielke, T. Comas, J. Woulfe, R. Monette, B. Chakravarthy and G.A.R Mealing, “Cytoskeletal, synaptic, and nuclear protein changes associated with rat interface organotypic hippocampal slice culture development.” Brain Res. Dev. Brain Res, vol. 160, no. 2, pp. 275–86, 2005, doi: 10.1016/j.devbrainres.2005.09.009.
  • K. Duff, W. Noble, K. Gaynor, and Y. Matsuoka, “Organotypic Slice Cultures from Transgenic Mice as Disease Model Systems,” J Mol Neurosci, vol. 19, no. 3, pp. 317–320, 2002, doi: 10.1385/JMN:19:3:317.
  • J. Noraberg, B. W. Kristensen, and J. Zimmer, “Markers for neuronal degeneration in organotypic slice cultures,” Brain Res. Brain Res. Protoc, vol. 3, no. 3, pp. 278–290, Jan. 1999, doi: 10.1016/s1385-299x(98)00050-6.
  • C. L. Croft, H. S. Futch, B. D. Moore, and T. E. Golde, “Organotypic brain slice cultures to model neurodegenerative proteinopathies,” Mol. Neurodegener, vol. 14, no. 1, Dec. 2019, doi: 10.1186/s13024-019-0346-0.
  • M. Finley, D. Fairman, D. Liu, P. Li, A. Wood, and S. Cho, “Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury,” Brain Research, vol. 1001, no. 1–2, pp. 125–132, Mar. 2004, doi: 10.1016/j.brainres.2003.12.009.
  • S. Cho, A. Wood, and M. Bowlby, “Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics,” Curr Neuropharmacol, vol. 5, no. 1, pp. 19–33, Mar. 2007, doi: 10.2174/157015907780077105.
  • K.H. Adcock, F. Metzger and J.P. Kapfhammer, “Purkinje cell dendritic tree development in the absence of excitatory neurotransmission and of brain-derived neurotrophic factor in organotypic slice cultures,” Neuroscience, May 2004, doi: 10.1016/j.neuroscience. 2004.04.032.
  • C. Humpel, “Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations) as a model to study clearance of beta-amyloid plaques,” Front. Aging Neurosci, vol. 7, Apr. 2015, doi: 10.3389/fnagi.2015.00047.
  • Z. Xiang, S. Hrabetova, S. I. Moskowitz, P. Casaccia-Bonnefil, S. R. Young, V. C. Nimmrich, H. Tiedge, S. Einheber, S. Karnup, R. Bianchi, and P. J. Bergold, “Long-term maintenance of mature hippocampal slices in vitro,” J Neurosci Methods, vol. 98, no. 2, pp. 145–154, Jun. 2000, doi: 10.1016/s0165-0270(00)00197-7.
  • A. Daria, A. Colombo, G. Llovera, H. Hampel, M. Willem, A. Liesz, C. Haass, and S. Tahirovic, “Young microglia restore amyloid plaque clearance of aged microglia,” The EMBO J, vol. 36, no. 5, pp. 583–603, Dec. 2016, doi: 10.15252/embj.201694591.
  • H. D. Müller, K. M. Hanumanthiah, K. Diederich, S. Schwab, W.-R. Schäbitz, and C. Sommer, “Brain-Derived Neurotrophic Factor But Not Forced Arm Use Improves Long-Term Outcome After Photothrombotic Stroke and Transiently Upregulates Binding Densities of Excitatory Glutamate Receptors in the Rat Brain,” Stroke, vol. 39, no. 3, pp. 1012–1021, Mar. 2008, doi: 10.1161/strokeaha.107.495069.
  • E. V. Shanina, C. Redecker, S. Reinecke, T. Schallert, and O. W. Witte, “Long-term effects of sequential cortical infarcts on scar size, brain volume and cognitive function,” Behav. Brain Res, vol. 158, no. 1, pp. 69–77, Mar. 2005, doi: 10.1016/j.bbr.2004.08.007.
  • C. Ullrich, N. Daschil, and C. Humpel, “Organotypic vibrosections: Novel whole sagittal brain cultures,” J Neurosci Methods, vol. 201, no. 1, pp. 131–141, Sep. 2011, doi: 10.1016/j.jneumeth.2011.07.021.
  • R. A. McKinney, M. Capogna, R. Dürr, B. H. Gähwiler and S. M. Thompson, “Miniature synaptic events maintain dendritic spines via AMPA receptor activation,” Nat Neurosci, vol. 2, no. 1, pp. 44–49, Jan. 1999, doi: 10.1038/4548.
  • L. Stoppini, P. A. Buchs, and D. Muller, “Lesion-induced neurite sprouting and synapse formation in hippocampal organotypic cultures,” Neurosci, vol. 57, no. 4, pp. 985–994, Dec. 1993, doi: 10.1016/0306-4522(93)90043-f.
  • O. Robain, G. Barbin, T. Billette de Villemeur, L. Jardin, T. Jahchan, and Y. Ben-Ari, “Development of mossy fiber synapses in hippocampal slice culture,” Brain Res Dev Brain Res, vol. 80, no. 1–2, pp. 244–250, Jul. 1994, doi: 10.1016/0165-3806(94)90109-0.
  • D. Muller, L. Stoppini, C. Wang, and J. Z. Kiss, “A role for polysialylated neural cell adhesion molcule in lesion-induced sprouting in hippocampal organotypic cultures,” Neurosci, vol. 61, no. 3, pp. 441–445, Aug. 1994, doi: 10.1016/0306-4522(94)90424-3.
  • J. Zimmer and B. H. Gähwiler, “Cellular and connective organization of slice cultures of the rat hippocampus and fascia dentata,” J Comp Neurol, vol. 228, no. 3, pp. 432–446, Sep. 1984, doi: 10.1002/cne.902280310.
  • B.H. Gähwiler, “Morphological differentiation of nerve cells in thin organotypic cultures derived from rat hippocampus and cerebellum,” Proc R Soc Lond B Biol Sci, vol. 211, no. 1184, pp. 287–290, Mar. 1981, doi: 10.1098/rspb.1981.0007.
  • G. Kempermann, “Why New Neurons? Possible Functions for Adult Hippocampal Neurogenesis,” J Neurosci, vol. 22, no. 3, pp. 635–638, Feb. 2002, doi: 10.1523/ JNEUROSCI.22-03-00635.2002.
  • W. M. O’Connor, B. L. Davidson, M. G. Kaplitt, M. V. Abbey, M. J. During, P. Leone, D. Langer, M. J. O’Connor, and A. Freese, “Adenovirus Vector-Mediated Gene Transfer into Human Epileptogenic Brain Slices: Prospects for Gene Therapy in Epilepsy,” Exp. Neurol, vol. 148, no. 1, pp. 167–178, Nov. 1997, doi: 10.1006/exnr.1997.6658.
  • R. W. H. Verwer, E. J. G. Dubelaar, W. T. J. M. C. Hermens, and D. F. Swaab, “Tissue cultures from adult human postmortem subcortical brain areas,” J Cell Mol Med, vol. 6, no. 3, pp. 429–432, Jul. 2002, doi: 10.1111/j.1582-4934.2002.tb00522.x.
  • M. Andersson, N. Avaliani, A. Svensson, J. Wickham, L. H. Pinborg, B. Jespersen, S. H. Christiansen, J. Bengzon, D. P. D. Woldbye, and M. Kokaia, “Optogenetic control of human neurons in organotypic brain cultures,” Sci Rep, vol. 6, no. 1, Apr. 2016, doi: 10.1038/srep24818.
  • J. T. Ting, B. Kalmbach, P. Chong, R. de Frates, C. D. Keene, R. P. Gwinn, C. Cobbs, A. L. Ko, J. G. Ojemann, R. G. Ellenbogen, C. Koch, and E. Lein, “A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits,” Sci Rep, vol. 8, no. 1, May 2018, doi: 10.1038/s41598-018-26803-9.
  • N. Schwarz, B. Uysal, M. Welzer, J. C. Bahr, N. Layer, H. Löffler, K. Stanaitis, H. PA, Y. G. Weber, U. B. Hedrich, J. B. Honegger, A. Skodras, A. J. Becker, T. V. Wuttke, and H. Koch, “Author response: Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease,” eLife, Aug. 2019, doi: 10.7554/eLife.48417.

Use of Organotypic Brain Slices in Neurobiological Studies

Year 2021, Volume: 10 Issue: 1, 95 - 107, 10.06.2021

Abstract

Organotypic brain slice cultures have now become a routine protocol in neurobiology researches. Thanks to the advancement in brain section culture techniques, the opportunity has emerged to examine the pathophysiology of many brain diseases in a tissue context very close to the in vivo situation. In addition to being an alternative to the long-term use of anesthetics and muscle relaxants in in vivo studies, it offers advantages such as maintaining the structural integrity of cell cultures and homogenates, while this culture environment also brings some disadvantages. Throughout this review study, brain slice culture technology was considered together with its advantages and disadvantages and its place in neurobiology studies was examined. These systems, in which cellular integrity is preserved, are much more efficient and useful in many areas such as neurodegeneration, neurogenesis, neurotoxicity compared to in vitro cell culture and in vivo experimental animal studies.

References

  • D. D. Clarke and L. Sokoloff, Circulation and energy metabolism of the brain. In: Sigel GJ, Agrano BW, Albers RW, Fisher SK and Uhler MD (eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Philadelphia, Lippincott-Raven, 1999, pp. 637-669.
  • M. E. Raichle and M. A. Mintun, “Brain work and brain imaging”, Annu Rev Neurosci, no. 29, pp. 449–476, 2006, doi: 10.1146/annurev.neuro.29.051605.112819.
  • G. N. Elston and J. DeFelipe, “Spine distribution in cortical pyramidal cells: a common organizational principle across species” Prog. Brain Res, no. 136, pp. 109–133, 2002, doi: 10.1016/s0079-6123(02)36012-6.
  • G. N. Elston, R. Benavides-Piccione, and J. DeFelipe, “The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey,” Journal Neurosci, vol. 21, no. 17, pp. RC163–RC163, Sep. 2001, doi: https://doi.org/10.1523/JNEUROSCI.21-17-j0002.2001.
  • T. Branco and M. Häusser, “Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites,” Neuron, vol. 69, no. 5, pp. 885–892, Mar. 2011, doi: 10.1016/j.neuron. 2011.02.006.
  • P. Somogyi, G. Tamás, R. Lujan, and E. H. Buhl, “Salient features of synaptic organisation in the cerebral cortex1Published on the World Wide Web on 3 March 1998.1,” Brain Res Rev, vol. 26, no. 2–3, pp. 113–135, May 1998, doi: 10.1016/s0165-0173(97)00061-1.
  • S. M. Crain, B. Crain, and E. R. Peterson, “Development of cross-tolerance to 5-hydroxytryptamine in organotypic cultures of mouse spinal cord-ganglia during chronic exposure to morphine,” Life Sci, vol. 31, no. 3, pp. 241–247, Jul. 1982, doi: 10.1016/0024-3205(82)90584-7.
  • B. H. Gähwiler and F. Hefti, “Guidance of acetylcholinesterase-containing fibres by target tissue in co-cultured brain slices,” Neurosci, vol. 13, no. 3, pp. 681–689, Nov. 1984.
  • L. Stoppini, P.-A. Buchs, and D. Muller, “A simple method for organotypic cultures of nervous tissue,” J. Neurosci. Methods, vol. 37, no. 2, pp. 173–182, Apr. 1991, doi: 10.1016/0165-0270(91)90128-m.
  • P. A. Buchs, L. Stoppini, and D. Muller, “Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures,” Brain Res. Dev. Brain Res, vol. 71, no. 1, pp. 81–91, Jan. 1993, doi: 10.1016/0165-3806(93)90108-m.
  • K. Ostergaard, J. P. Schou, and J. Zimmer, “Rat ventral mesencephalon grown as organotypic slice cultures and co-cultured with striatum, hippocampus, and cerebellum,” Exp. Brain Res, vol. 82, no. 3, Nov. 1990, doi: 10.1007/BF00228796.
  • K. Ostergaard, “Organotypic slice cultures of the rat striatum—I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA,” Neurosci, vol. 53, no. 3, pp. 679–693, Apr. 1993, doi: 10.1016/0306-4522(93)90616-n.
  • B. H. Gähwiler, L. Rietschin, T. Knöpfel, and A. Enz, “Continuous presence of nerve growth factor is required for maintenance of cholinergic septal neurons in organotypic slice cultures,” Neurosci, vol. 36, no. 1, pp. 27–31, Jan. 1990, doi: 10.1016/0306-4522(90)90348-8.
  • R. Robertson, J. Baratta, G. Kageyama, D. Ha, and J. Yu, “Specificity of attachment and neurite outgrowth of dissociated basal forebrain cholinergic neurons seeded on to organotypic slice cultures of forebrain,” Neurosci, vol. 80, no. 3, pp. 741–752, Jul. 1997, doi: 10.1016/s0306-4522(97)00067-5.
  • L. Sundstrom, A. Pringle, B. Morrison, and M. Bradley, “Organotypic cultures as tools for functional screening in the CNS,” Drug Discov, vol. 10, no. 14, pp. 993–1000, Jul. 2005, doi: 10.1016/S1359-6446(05)03502-6.
  • B. Drexler, H. Hentschke, B. Antkowiak, and C. Grasshoff, “Organotypic Cultures as Tools for Testing Neuroactive Drugs – Link Between In-Vitro and In-Vivo Experiments,” Curr. Med. Chem, vol. 17, no. 36, pp. 4538–4550, Dec. 2010, doi: 10.2174/092986710794183042.
  • J. Noraberg, “Organotypic Brain Slice Cultures: An Efficient and Reliable Method for Neurotoxicological Screening and Mechanistic Studies,” ATLA, vol. 32, no. 4, pp. 329–337, Oct. 2004, doi: 10.1177/026119290403200403.
  • M.V. Ravi, K. Joseph, J. Wurm, S. Behringer, N. Garrelfs, P. d’Errico, Y. Naseri, P. Franco, M. Meyer-Leuhmann, R. Sankowski, M.J. Shah, I. Mader, D. Delev, M. Follo, J. Beck, O. Schnell, U.G. Hofmann U.G and D.H. Heiland, “Human organotypic brain slice culture: a novel framework for environmental research in neuro-oncology,” Life Sci. Alliance, vol. 2, no. 4, e201900305, 2019, doi: 10.26508/lsa.201900305.
  • C. L. Croft and W. Noble, “Preparation of organotypic brain slice cultures for the study of Alzheimer's disease,” F1000 Res, vol. 7, pp. 592, 2018, doi: 10.12688/f1000research. 14500.2.
  • B. A. Bahr, “Long-term hippocampal slices: A model system for investigating synaptic mechanisms and pathologic processes,” J. Neurosci. Res, vol. 42, no. 3, pp. 294–305, Oct. 1995, doi: 10.1002/jnr.490420303.
  • A. Simoni, C. B. Griesinger and F. A. Edwards, “Development of Rat CA1 Neurones in Acute Versus Organotypic Slices: Role of Experience in Synaptic Morphology and Activity,” J. Physiol, vol. 550, no. 1, pp. 135–147, Jul. 2003, doi: 10.1113/jphysiol. 2003.039099.
  • A. İrem Lütfiye, “nAChR α7’nin Sinaptik Plastisite Üzerine Etkilerinin Olfaktör Bulbus Ve Hippokampus Organotipik Kesit Kültürlerinde İncelenmesi,” Doktora Tezi, İstanbul Üniversitesi, 2018.
  • B. Gähwiler, “Organotypic slice cultures: a technique has come of age,” Trends Neurosci, vol. 20, no. 10, pp. 471–477, Oct. 1997, doi: 10.1113/jphysiol.2003.039099.
  • J. G. Mielke, T. Comas, J. Woulfe, R. Monette, B. Chakravarthy and G.A.R Mealing, “Cytoskeletal, synaptic, and nuclear protein changes associated with rat interface organotypic hippocampal slice culture development.” Brain Res. Dev. Brain Res, vol. 160, no. 2, pp. 275–86, 2005, doi: 10.1016/j.devbrainres.2005.09.009.
  • K. Duff, W. Noble, K. Gaynor, and Y. Matsuoka, “Organotypic Slice Cultures from Transgenic Mice as Disease Model Systems,” J Mol Neurosci, vol. 19, no. 3, pp. 317–320, 2002, doi: 10.1385/JMN:19:3:317.
  • J. Noraberg, B. W. Kristensen, and J. Zimmer, “Markers for neuronal degeneration in organotypic slice cultures,” Brain Res. Brain Res. Protoc, vol. 3, no. 3, pp. 278–290, Jan. 1999, doi: 10.1016/s1385-299x(98)00050-6.
  • C. L. Croft, H. S. Futch, B. D. Moore, and T. E. Golde, “Organotypic brain slice cultures to model neurodegenerative proteinopathies,” Mol. Neurodegener, vol. 14, no. 1, Dec. 2019, doi: 10.1186/s13024-019-0346-0.
  • M. Finley, D. Fairman, D. Liu, P. Li, A. Wood, and S. Cho, “Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury,” Brain Research, vol. 1001, no. 1–2, pp. 125–132, Mar. 2004, doi: 10.1016/j.brainres.2003.12.009.
  • S. Cho, A. Wood, and M. Bowlby, “Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics,” Curr Neuropharmacol, vol. 5, no. 1, pp. 19–33, Mar. 2007, doi: 10.2174/157015907780077105.
  • K.H. Adcock, F. Metzger and J.P. Kapfhammer, “Purkinje cell dendritic tree development in the absence of excitatory neurotransmission and of brain-derived neurotrophic factor in organotypic slice cultures,” Neuroscience, May 2004, doi: 10.1016/j.neuroscience. 2004.04.032.
  • C. Humpel, “Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations) as a model to study clearance of beta-amyloid plaques,” Front. Aging Neurosci, vol. 7, Apr. 2015, doi: 10.3389/fnagi.2015.00047.
  • Z. Xiang, S. Hrabetova, S. I. Moskowitz, P. Casaccia-Bonnefil, S. R. Young, V. C. Nimmrich, H. Tiedge, S. Einheber, S. Karnup, R. Bianchi, and P. J. Bergold, “Long-term maintenance of mature hippocampal slices in vitro,” J Neurosci Methods, vol. 98, no. 2, pp. 145–154, Jun. 2000, doi: 10.1016/s0165-0270(00)00197-7.
  • A. Daria, A. Colombo, G. Llovera, H. Hampel, M. Willem, A. Liesz, C. Haass, and S. Tahirovic, “Young microglia restore amyloid plaque clearance of aged microglia,” The EMBO J, vol. 36, no. 5, pp. 583–603, Dec. 2016, doi: 10.15252/embj.201694591.
  • H. D. Müller, K. M. Hanumanthiah, K. Diederich, S. Schwab, W.-R. Schäbitz, and C. Sommer, “Brain-Derived Neurotrophic Factor But Not Forced Arm Use Improves Long-Term Outcome After Photothrombotic Stroke and Transiently Upregulates Binding Densities of Excitatory Glutamate Receptors in the Rat Brain,” Stroke, vol. 39, no. 3, pp. 1012–1021, Mar. 2008, doi: 10.1161/strokeaha.107.495069.
  • E. V. Shanina, C. Redecker, S. Reinecke, T. Schallert, and O. W. Witte, “Long-term effects of sequential cortical infarcts on scar size, brain volume and cognitive function,” Behav. Brain Res, vol. 158, no. 1, pp. 69–77, Mar. 2005, doi: 10.1016/j.bbr.2004.08.007.
  • C. Ullrich, N. Daschil, and C. Humpel, “Organotypic vibrosections: Novel whole sagittal brain cultures,” J Neurosci Methods, vol. 201, no. 1, pp. 131–141, Sep. 2011, doi: 10.1016/j.jneumeth.2011.07.021.
  • R. A. McKinney, M. Capogna, R. Dürr, B. H. Gähwiler and S. M. Thompson, “Miniature synaptic events maintain dendritic spines via AMPA receptor activation,” Nat Neurosci, vol. 2, no. 1, pp. 44–49, Jan. 1999, doi: 10.1038/4548.
  • L. Stoppini, P. A. Buchs, and D. Muller, “Lesion-induced neurite sprouting and synapse formation in hippocampal organotypic cultures,” Neurosci, vol. 57, no. 4, pp. 985–994, Dec. 1993, doi: 10.1016/0306-4522(93)90043-f.
  • O. Robain, G. Barbin, T. Billette de Villemeur, L. Jardin, T. Jahchan, and Y. Ben-Ari, “Development of mossy fiber synapses in hippocampal slice culture,” Brain Res Dev Brain Res, vol. 80, no. 1–2, pp. 244–250, Jul. 1994, doi: 10.1016/0165-3806(94)90109-0.
  • D. Muller, L. Stoppini, C. Wang, and J. Z. Kiss, “A role for polysialylated neural cell adhesion molcule in lesion-induced sprouting in hippocampal organotypic cultures,” Neurosci, vol. 61, no. 3, pp. 441–445, Aug. 1994, doi: 10.1016/0306-4522(94)90424-3.
  • J. Zimmer and B. H. Gähwiler, “Cellular and connective organization of slice cultures of the rat hippocampus and fascia dentata,” J Comp Neurol, vol. 228, no. 3, pp. 432–446, Sep. 1984, doi: 10.1002/cne.902280310.
  • B.H. Gähwiler, “Morphological differentiation of nerve cells in thin organotypic cultures derived from rat hippocampus and cerebellum,” Proc R Soc Lond B Biol Sci, vol. 211, no. 1184, pp. 287–290, Mar. 1981, doi: 10.1098/rspb.1981.0007.
  • G. Kempermann, “Why New Neurons? Possible Functions for Adult Hippocampal Neurogenesis,” J Neurosci, vol. 22, no. 3, pp. 635–638, Feb. 2002, doi: 10.1523/ JNEUROSCI.22-03-00635.2002.
  • W. M. O’Connor, B. L. Davidson, M. G. Kaplitt, M. V. Abbey, M. J. During, P. Leone, D. Langer, M. J. O’Connor, and A. Freese, “Adenovirus Vector-Mediated Gene Transfer into Human Epileptogenic Brain Slices: Prospects for Gene Therapy in Epilepsy,” Exp. Neurol, vol. 148, no. 1, pp. 167–178, Nov. 1997, doi: 10.1006/exnr.1997.6658.
  • R. W. H. Verwer, E. J. G. Dubelaar, W. T. J. M. C. Hermens, and D. F. Swaab, “Tissue cultures from adult human postmortem subcortical brain areas,” J Cell Mol Med, vol. 6, no. 3, pp. 429–432, Jul. 2002, doi: 10.1111/j.1582-4934.2002.tb00522.x.
  • M. Andersson, N. Avaliani, A. Svensson, J. Wickham, L. H. Pinborg, B. Jespersen, S. H. Christiansen, J. Bengzon, D. P. D. Woldbye, and M. Kokaia, “Optogenetic control of human neurons in organotypic brain cultures,” Sci Rep, vol. 6, no. 1, Apr. 2016, doi: 10.1038/srep24818.
  • J. T. Ting, B. Kalmbach, P. Chong, R. de Frates, C. D. Keene, R. P. Gwinn, C. Cobbs, A. L. Ko, J. G. Ojemann, R. G. Ellenbogen, C. Koch, and E. Lein, “A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits,” Sci Rep, vol. 8, no. 1, May 2018, doi: 10.1038/s41598-018-26803-9.
  • N. Schwarz, B. Uysal, M. Welzer, J. C. Bahr, N. Layer, H. Löffler, K. Stanaitis, H. PA, Y. G. Weber, U. B. Hedrich, J. B. Honegger, A. Skodras, A. J. Becker, T. V. Wuttke, and H. Koch, “Author response: Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease,” eLife, Aug. 2019, doi: 10.7554/eLife.48417.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Review Article
Authors

Elif Mutlu 0000-0002-2580-4043

Hasan H.s. Abuıyada 0000-0002-5525-779X

Publication Date June 10, 2021
Submission Date March 24, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

IEEE E. Mutlu and H. H. Abuıyada, “Organotipik Beyin Kesitleri Kullanımının Nörobiyolojik Çalışmalardaki Yeri”, DUFED, vol. 10, no. 1, pp. 95–107, 2021.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx