Research Article
BibTex RIS Cite

Çekirdek Malzemesi Ergiyik Biriktirme Yöntemi ile Üretilen Bal Peteği Sandviç Kompozitlerin Eğilme Dayanımlarının İncelenmesi

Year 2021, Volume: 10 Issue: 2, 147 - 162, 30.12.2021

Abstract

Bu çalışmada, çekirdek yapı malzemesi olarak bitki bazlı ve yenilenebilir kaynaklardan üretilen polilaktik asit (PLA) ve petrol bazlı üretilen Akrilonitril-butadien-stiren (ABS) seçilmiş ve yüzey kapakları polyester/cam fiber kompozitler kullanılmış ve sandviç levhalar üretilmiştir. Çekirdek yapı malzemesi üretiminde baskı işleminin hızlı ve kolay yapılabilmesi gibi avantajlarından dolayı ergiyik biriktirme yöntemi kullanılmıştır. Çekirdek malzemeleri 3B yazıcı kullanılarak üç farklı hücre boyutu ve üç farklı hücre yüksekliğinde imal edilmiştir. Numunelere 3 nokta eğilme testleri uygulanmış ve kuvvet-yer değiştirme grafikleri elde edilmiştir. Elde edilen sonuçlar grafikler halinde sunulmuştur. Üç nokta eğilme deneyleri sonrası hasar tipleri incelenmiş ve baskın hasar tiplerinin katmanlar arası kopma ve kayma hasarı olduğu görülmüştür. Bu durumun önüne geçilebilmesi 3 boyutlu yazıcı kullanılarak ergiyik biriktirme yöntemi ile üretilen PLA termoplastik kullanılarak üretilmiş numunelere ikinci aşamada sıcaklık ve basınç uygulanmıştır. PLA malzemeden üretilen numunelerin ABS malzemeden üretilen numunelere göre daha yüksek eğilme dayanımına sahip oldukları görülmüştür.

References

  • W. Nsengiyumva, S. Zhong, J. Lin, Q. Zhang, J. Zhong, and Y. Huang, “Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review,” Compos. Struct., vol. 256, p. 112951, 2021, doi: https://doi.org/10.1016/j.compstruct.2020.112951.
  • C. Garnier, M. L. Pastor, F. Eyma, and B. Lorrain, “The detection of aeronautical defects in situ on composite structures using Non Destructive Testing,” Compos. Struct., vol. 93, no. 5, pp. 1328–1336, 2011, doi: https://doi.org/10.1016/j.compstruct.2010.10.017.
  • T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Glass fiber-reinforced polymer composites – a review,” J. Reinf. Plast. Compos., vol. 33, no. 13, pp. 1258–1275, Apr. 2014, doi: 10.1177/0731684414530790.
  • F. J. Macedo, M. E. Benedet, A. V. Fantin, D. P. Willemann, F. A. A. da Silva, and A. Albertazzi, “Inspection of defects of composite materials in inner cylindrical surfaces using endoscopic shearography,” Opt. Lasers Eng., vol. 104, pp. 100–108, 2018, doi: https://doi.org/10.1016/j.optlaseng.2017.06.005.
  • S. Laurenzi, A. Grilli, M. Pinna, F. De Nicola, G. Cattaneo, and M. Marchetti, “Process simulation for a large composite aeronautic beam by resin transfer molding,” Compos. Part B Eng., vol. 57, pp. 47–55, 2014, doi: https://doi.org/10.1016/j.compositesb.2013.09.039.
  • J. Serra et al., “Validation and modeling of aeronautical composite structures subjected to combined loadings: The VERTEX project. Part 2: Load envelopes for the assessment of panels with large notches,” Compos. Struct., vol. 180, pp. 550–567, 2017, doi: https://doi.org/10.1016/j.compstruct.2017.08.055.
  • C. Meola, S. Boccardi, and G. maria Carlomagno, “Chapter 1 - Composite Materials in the Aeronautical Industry,” C. Meola, S. Boccardi, and G. maria B. T.-I. T. in the E. of A. C. M. Carlomagno, Eds. Woodhead Publishing, 2017, pp. 1–24.
  • A. Caggiano, F. Napolitano, L. Nele, and R. Teti, “Study on thrust force and torque sensor signals in drilling of Al/CFRP stacks for aeronautical applications,” Procedia CIRP, vol. 79, pp. 337–342, 2019, doi: https://doi.org/10.1016/j.procir.2019.02.079.
  • F. Ciampa, P. Mahmoodi, F. Pinto, and M. Meo, “Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components,” Sensors , vol. 18, no. 2. 2018, doi: 10.3390/s18020609.
  • M. E. Ibrahim, “Nondestructive evaluation of thick-section composites and sandwich structures: A review,” Compos. Part A Appl. Sci. Manuf., vol. 64, pp. 36–48, 2014, doi: https://doi.org/10.1016/j.compositesa.2014.04.010.
  • C. M. Teller and C. M. Fortunko, “NDE Requirements for Thick Marine Composites BT - Review of Progress in Quantitative Nondestructive Evaluation: Volume 10B,” D. O. Thompson and D. E. Chimenti, Eds. Boston, MA: Springer US, 1991, pp. 1599–1606.
  • G. Kotsikos, A. G. Gibson, and J. Mawella, “Assessment of moisture absorption in marine GRP laminates with aid of nuclear magnetic resonance imaging,” Plast. Rubber Compos., vol. 36, no. 9, pp. 413–418, Nov. 2007, doi: 10.1179/174328907X248203.
  • S. Y. Kim, C. S. Shim, C. Sturtevant, D. (Dae-W.) Kim, and H. C. Song, “Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures,” Int. J. Nav. Archit. Ocean Eng., vol. 6, no. 3, pp. 723–736, 2014, doi: https://doi.org/10.2478/IJNAOE-2013-0208.
  • M. E. Ibrahim, “7 - Nondestructive testing and structural health monitoring of marine composite structures,” in Woodhead Publishing Series in Composites Science and Engineering, J. Graham-Jones and J. B. T.-M. A. of A. F.-R. C. Summerscales, Eds. Woodhead Publishing, 2016, pp. 147–183.
  • L. S. Sutherland, “A review of impact testing on marine composite materials: Part I – Marine impacts on marine composites,” Compos. Struct., vol. 188, pp. 197–208, 2018, doi: https://doi.org/10.1016/j.compstruct.2017.12.073.
  • T. Gobikannan et al., “Flexural Properties and Failure Mechanisms of Infusible Thermoplastic- and Thermosetting based Composite Materials for Marine Applications,” Compos. Struct., p. 114276, 2021, doi: https://doi.org/10.1016/j.compstruct.2021.114276.
  • S.C. Her and W.-B. Chu, “3D Surface Profile Construction and Flaw Detection in a Composite Structure,” Strength Mater., vol. 51, no. 1, pp. 130–137, 2019, doi: 10.1007/s11223-019-00058-9.
  • H. Tuwair, J. Drury, and J. Volz, “Testing and evaluation of full scale fiber-reinforced polymer bridge deck panels incorporating a polyurethane foam core,” Eng. Struct., vol. 184, pp. 205–216, 2019, doi: https://doi.org/10.1016/j.engstruct.2019.01.104.
  • C. Yanen and M. Y. Solmaz, “Ballistic tests of lightweight hybrid composites for body armor,” Mater. Test., vol. 61, no. 5, pp. 425–433, 2019, doi: doi:10.3139/120.111336.
  • R. Yadav, M. Naebe, X. Wang, and B. Kandasubramanian, “Body armour materials: from steel to contemporary biomimetic systems,” RSC Adv., vol. 6, no. 116, pp. 115145–115174, 2016, doi: 10.1039/C6RA24016J.
  • N. J. Hoff, S. E. Mautner, and A. E. Rev, “Sandwich construction,” 1944.
  • F. J. Plantema, “Sandwich construction: the bending and buckling of sandwich beams, plates, and shells,” 1966.
  • D. Guedra-Degeorges, P. Thevenet, and S. Maison, “Damage Tolerance of Aeronautical Sandwich Structures BT - Mechanics of Sandwich Structures,” 1998, pp. 29–36.
  • J. Jakobsen, E. Bozhevolnaya, and O. T. Thomsen, “New peel stopper concept for sandwich structures,” Compos. Sci. Technol., vol. 67, no. 15, pp. 3378–3385, 2007, doi: https://doi.org/10.1016/j.compscitech.2007.03.033.
  • L. A. Carlsson and G. A. Kardomateas, Structural and failure mechanics of sandwich composites, vol. 121. Springer Science & Business Media, 2011.
  • C. Wang, M. Chen, K. Yao, X. Zhu, and D. Fang, “Fire protection design for composite lattice sandwich structure,” Sci. Eng. Compos. Mater., vol. 24, no. 6, pp. 919–927, 2017, doi: doi:10.1515/secm-2015-0525.
  • M. Y. Solmaz and E. Çelik, “3 Boyutlu Yazıcı Kullanılarak Üretilen Bal Peteği Sandviç Kompozitlerin Basma Yükü Altındaki Performanslarının Araştırılması,” Fırat Üniversitesi Mühendislik Bilim. Derg., vol. 30, no. 1, pp. 277–286, 2018.
  • B. Kiyak and M. O. Kaman, “Hücre Boşlukları Köpük ile Doldurulmuş Kompozit Sandviç Levhaların Basma ve Eğilme Dayanımlarının İncelenmesi Investigation of Compressive and Bending Strength of Foam Filled Composite Sandwich Plates,” vol. 31, no. 1, pp. 47–52, 2019.
  • C. Chen, Y. Li, Y. Gu, M. Li, and Z. Zhang, “Effect of MWCNTs added by electrostatic flocking method on adhesion of carbon fiber prepreg/Nomex honeycomb sandwich composites,” Mater. Des., vol. 127, pp. 15–21, 2017, doi: https://doi.org/10.1016/j.matdes.2017.04.025.
  • Y. Zhou, Y. Xu, H. Liu, Y. Guo, X. Yi, and Y. Jia, “Debonding identification of Nomex honeycomb sandwich structures based on the increased vibration amplitude of debonded skin,” Compos. Part B Eng., vol. 200, p. 108233, 2020, doi: https://doi.org/10.1016/j.compositesb.2020.108233.
  • M. Jean-St-Laurent, M.-L. Dano, and M.-J. Potvin, “Compression after impact behavior of carbon/epoxy composite sandwich panels with Nomex honeycomb core subjected to low velocity impacts at extreme cold temperatures,” Compos. Struct., vol. 261, p. 113516, 2021, doi: https://doi.org/10.1016/j.compstruct.2020.113516.
  • T. Fiedler and A. Öchsner, “Experimental analysis of the flexural properties of sandwich panels with cellular core materials,” Materwiss. Werksttech., vol. 39, no. 2, pp. 121–124, Feb. 2008, doi: https://doi.org/10.1002/mawe.200700269.
  • G. G. Galletti, C. Vinquist, and O. S. Es-Said, “Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending,” Eng. Fail. Anal., vol. 15, no. 5, pp. 555–562, 2008, doi: https://doi.org/10.1016/j.engfailanal.2007.04.004.
  • J. Banghai, L. Zhibin, and L. Fangyun, “Failure mechanism of sandwich beams subjected to three-point bending,” Compos. Struct., vol. 133, pp. 739–745, 2015, doi: https://doi.org/10.1016/j.compstruct.2015.07.056.
  • S. Shi, Z. Sun, X. Hu, and H. Chen, “Flexural strength and energy absorption of carbon-fiber–aluminum-honeycomb composite sandwich reinforced by aluminum grid,” Thin-Walled Struct., vol. 84, pp. 416–422, 2014, doi: https://doi.org/10.1016/j.tws.2014.07.015.
  • M. Chuda-Kowalska, Z. Pozorski, and A. Garstecki, “Experimental determination of shear rigidity of sandwich panels with soft core,” 10th Int. Conf. Mod. Build. Mater. Struct. Tech., no. November 2014, pp. 56–63, 2010.
  • M. O. Kaman, M. Y. Solmaz, and K. Turan, “Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels,” J. Compos. Mater., vol. 44, no. 24, pp. 2819–2831, 2010, doi: 10.1177/0021998310371541.
  • E. Çelik, “3 Boyutlu Yazıcı Kullanılarak Üretilen Bal Peteği Sandviç Kompozitlerin Mekanik Performanslarının Araştırılması,” M.S. thesis, Department of Mechanical Engineering, Fırat University, 2019.

Investigation of the Bending Strength of Honeycomb Sandwich Composites Produced by Fused Deposition Modeling

Year 2021, Volume: 10 Issue: 2, 147 - 162, 30.12.2021

Abstract

In this study, polylactic acid (PLA) produced from plant-based and renewable resources and Acrylonitrile-butadiene-styrene (ABS) produced petroleum-based were selected as core building materials and polyester/glass fiber composites were used for surface covers and sandwich composite sheets were produced. In the production of core building materials, fused deposition modeling has been used due to its advantages such as fast and easy printing. Core materials were fabricated in three different cell sizes and three different cell heights using a 3D printer. Three-point bending tests were applied to the samples and load-displacement graphs were obtained. Obtained results are presented in graphics. After three-point bending tests, damage types were examined and it was seen that the dominant damage types were interlayer rupture and shear damage. In order to prevent this situation, temperature and pressure were applied to the samples produced using a 3D printer in the second stage. It was observed that the samples produced from PLA material had higher flexural strength than the samples produced from ABS material. 

References

  • W. Nsengiyumva, S. Zhong, J. Lin, Q. Zhang, J. Zhong, and Y. Huang, “Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: A state-of-the-art review,” Compos. Struct., vol. 256, p. 112951, 2021, doi: https://doi.org/10.1016/j.compstruct.2020.112951.
  • C. Garnier, M. L. Pastor, F. Eyma, and B. Lorrain, “The detection of aeronautical defects in situ on composite structures using Non Destructive Testing,” Compos. Struct., vol. 93, no. 5, pp. 1328–1336, 2011, doi: https://doi.org/10.1016/j.compstruct.2010.10.017.
  • T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Glass fiber-reinforced polymer composites – a review,” J. Reinf. Plast. Compos., vol. 33, no. 13, pp. 1258–1275, Apr. 2014, doi: 10.1177/0731684414530790.
  • F. J. Macedo, M. E. Benedet, A. V. Fantin, D. P. Willemann, F. A. A. da Silva, and A. Albertazzi, “Inspection of defects of composite materials in inner cylindrical surfaces using endoscopic shearography,” Opt. Lasers Eng., vol. 104, pp. 100–108, 2018, doi: https://doi.org/10.1016/j.optlaseng.2017.06.005.
  • S. Laurenzi, A. Grilli, M. Pinna, F. De Nicola, G. Cattaneo, and M. Marchetti, “Process simulation for a large composite aeronautic beam by resin transfer molding,” Compos. Part B Eng., vol. 57, pp. 47–55, 2014, doi: https://doi.org/10.1016/j.compositesb.2013.09.039.
  • J. Serra et al., “Validation and modeling of aeronautical composite structures subjected to combined loadings: The VERTEX project. Part 2: Load envelopes for the assessment of panels with large notches,” Compos. Struct., vol. 180, pp. 550–567, 2017, doi: https://doi.org/10.1016/j.compstruct.2017.08.055.
  • C. Meola, S. Boccardi, and G. maria Carlomagno, “Chapter 1 - Composite Materials in the Aeronautical Industry,” C. Meola, S. Boccardi, and G. maria B. T.-I. T. in the E. of A. C. M. Carlomagno, Eds. Woodhead Publishing, 2017, pp. 1–24.
  • A. Caggiano, F. Napolitano, L. Nele, and R. Teti, “Study on thrust force and torque sensor signals in drilling of Al/CFRP stacks for aeronautical applications,” Procedia CIRP, vol. 79, pp. 337–342, 2019, doi: https://doi.org/10.1016/j.procir.2019.02.079.
  • F. Ciampa, P. Mahmoodi, F. Pinto, and M. Meo, “Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components,” Sensors , vol. 18, no. 2. 2018, doi: 10.3390/s18020609.
  • M. E. Ibrahim, “Nondestructive evaluation of thick-section composites and sandwich structures: A review,” Compos. Part A Appl. Sci. Manuf., vol. 64, pp. 36–48, 2014, doi: https://doi.org/10.1016/j.compositesa.2014.04.010.
  • C. M. Teller and C. M. Fortunko, “NDE Requirements for Thick Marine Composites BT - Review of Progress in Quantitative Nondestructive Evaluation: Volume 10B,” D. O. Thompson and D. E. Chimenti, Eds. Boston, MA: Springer US, 1991, pp. 1599–1606.
  • G. Kotsikos, A. G. Gibson, and J. Mawella, “Assessment of moisture absorption in marine GRP laminates with aid of nuclear magnetic resonance imaging,” Plast. Rubber Compos., vol. 36, no. 9, pp. 413–418, Nov. 2007, doi: 10.1179/174328907X248203.
  • S. Y. Kim, C. S. Shim, C. Sturtevant, D. (Dae-W.) Kim, and H. C. Song, “Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures,” Int. J. Nav. Archit. Ocean Eng., vol. 6, no. 3, pp. 723–736, 2014, doi: https://doi.org/10.2478/IJNAOE-2013-0208.
  • M. E. Ibrahim, “7 - Nondestructive testing and structural health monitoring of marine composite structures,” in Woodhead Publishing Series in Composites Science and Engineering, J. Graham-Jones and J. B. T.-M. A. of A. F.-R. C. Summerscales, Eds. Woodhead Publishing, 2016, pp. 147–183.
  • L. S. Sutherland, “A review of impact testing on marine composite materials: Part I – Marine impacts on marine composites,” Compos. Struct., vol. 188, pp. 197–208, 2018, doi: https://doi.org/10.1016/j.compstruct.2017.12.073.
  • T. Gobikannan et al., “Flexural Properties and Failure Mechanisms of Infusible Thermoplastic- and Thermosetting based Composite Materials for Marine Applications,” Compos. Struct., p. 114276, 2021, doi: https://doi.org/10.1016/j.compstruct.2021.114276.
  • S.C. Her and W.-B. Chu, “3D Surface Profile Construction and Flaw Detection in a Composite Structure,” Strength Mater., vol. 51, no. 1, pp. 130–137, 2019, doi: 10.1007/s11223-019-00058-9.
  • H. Tuwair, J. Drury, and J. Volz, “Testing and evaluation of full scale fiber-reinforced polymer bridge deck panels incorporating a polyurethane foam core,” Eng. Struct., vol. 184, pp. 205–216, 2019, doi: https://doi.org/10.1016/j.engstruct.2019.01.104.
  • C. Yanen and M. Y. Solmaz, “Ballistic tests of lightweight hybrid composites for body armor,” Mater. Test., vol. 61, no. 5, pp. 425–433, 2019, doi: doi:10.3139/120.111336.
  • R. Yadav, M. Naebe, X. Wang, and B. Kandasubramanian, “Body armour materials: from steel to contemporary biomimetic systems,” RSC Adv., vol. 6, no. 116, pp. 115145–115174, 2016, doi: 10.1039/C6RA24016J.
  • N. J. Hoff, S. E. Mautner, and A. E. Rev, “Sandwich construction,” 1944.
  • F. J. Plantema, “Sandwich construction: the bending and buckling of sandwich beams, plates, and shells,” 1966.
  • D. Guedra-Degeorges, P. Thevenet, and S. Maison, “Damage Tolerance of Aeronautical Sandwich Structures BT - Mechanics of Sandwich Structures,” 1998, pp. 29–36.
  • J. Jakobsen, E. Bozhevolnaya, and O. T. Thomsen, “New peel stopper concept for sandwich structures,” Compos. Sci. Technol., vol. 67, no. 15, pp. 3378–3385, 2007, doi: https://doi.org/10.1016/j.compscitech.2007.03.033.
  • L. A. Carlsson and G. A. Kardomateas, Structural and failure mechanics of sandwich composites, vol. 121. Springer Science & Business Media, 2011.
  • C. Wang, M. Chen, K. Yao, X. Zhu, and D. Fang, “Fire protection design for composite lattice sandwich structure,” Sci. Eng. Compos. Mater., vol. 24, no. 6, pp. 919–927, 2017, doi: doi:10.1515/secm-2015-0525.
  • M. Y. Solmaz and E. Çelik, “3 Boyutlu Yazıcı Kullanılarak Üretilen Bal Peteği Sandviç Kompozitlerin Basma Yükü Altındaki Performanslarının Araştırılması,” Fırat Üniversitesi Mühendislik Bilim. Derg., vol. 30, no. 1, pp. 277–286, 2018.
  • B. Kiyak and M. O. Kaman, “Hücre Boşlukları Köpük ile Doldurulmuş Kompozit Sandviç Levhaların Basma ve Eğilme Dayanımlarının İncelenmesi Investigation of Compressive and Bending Strength of Foam Filled Composite Sandwich Plates,” vol. 31, no. 1, pp. 47–52, 2019.
  • C. Chen, Y. Li, Y. Gu, M. Li, and Z. Zhang, “Effect of MWCNTs added by electrostatic flocking method on adhesion of carbon fiber prepreg/Nomex honeycomb sandwich composites,” Mater. Des., vol. 127, pp. 15–21, 2017, doi: https://doi.org/10.1016/j.matdes.2017.04.025.
  • Y. Zhou, Y. Xu, H. Liu, Y. Guo, X. Yi, and Y. Jia, “Debonding identification of Nomex honeycomb sandwich structures based on the increased vibration amplitude of debonded skin,” Compos. Part B Eng., vol. 200, p. 108233, 2020, doi: https://doi.org/10.1016/j.compositesb.2020.108233.
  • M. Jean-St-Laurent, M.-L. Dano, and M.-J. Potvin, “Compression after impact behavior of carbon/epoxy composite sandwich panels with Nomex honeycomb core subjected to low velocity impacts at extreme cold temperatures,” Compos. Struct., vol. 261, p. 113516, 2021, doi: https://doi.org/10.1016/j.compstruct.2020.113516.
  • T. Fiedler and A. Öchsner, “Experimental analysis of the flexural properties of sandwich panels with cellular core materials,” Materwiss. Werksttech., vol. 39, no. 2, pp. 121–124, Feb. 2008, doi: https://doi.org/10.1002/mawe.200700269.
  • G. G. Galletti, C. Vinquist, and O. S. Es-Said, “Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending,” Eng. Fail. Anal., vol. 15, no. 5, pp. 555–562, 2008, doi: https://doi.org/10.1016/j.engfailanal.2007.04.004.
  • J. Banghai, L. Zhibin, and L. Fangyun, “Failure mechanism of sandwich beams subjected to three-point bending,” Compos. Struct., vol. 133, pp. 739–745, 2015, doi: https://doi.org/10.1016/j.compstruct.2015.07.056.
  • S. Shi, Z. Sun, X. Hu, and H. Chen, “Flexural strength and energy absorption of carbon-fiber–aluminum-honeycomb composite sandwich reinforced by aluminum grid,” Thin-Walled Struct., vol. 84, pp. 416–422, 2014, doi: https://doi.org/10.1016/j.tws.2014.07.015.
  • M. Chuda-Kowalska, Z. Pozorski, and A. Garstecki, “Experimental determination of shear rigidity of sandwich panels with soft core,” 10th Int. Conf. Mod. Build. Mater. Struct. Tech., no. November 2014, pp. 56–63, 2010.
  • M. O. Kaman, M. Y. Solmaz, and K. Turan, “Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels,” J. Compos. Mater., vol. 44, no. 24, pp. 2819–2831, 2010, doi: 10.1177/0021998310371541.
  • E. Çelik, “3 Boyutlu Yazıcı Kullanılarak Üretilen Bal Peteği Sandviç Kompozitlerin Mekanik Performanslarının Araştırılması,” M.S. thesis, Department of Mechanical Engineering, Fırat University, 2019.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Cenk Yanen 0000-0002-5092-8734

Eyüp Çelik This is me 0000-0003-1914-375X

Murat Yavuz Solmaz 0000-0001-6394-0313

Publication Date December 30, 2021
Submission Date June 23, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

IEEE C. Yanen, E. Çelik, and M. Y. Solmaz, “Çekirdek Malzemesi Ergiyik Biriktirme Yöntemi ile Üretilen Bal Peteği Sandviç Kompozitlerin Eğilme Dayanımlarının İncelenmesi”, DUFED, vol. 10, no. 2, pp. 147–162, 2021.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx