Research Article
BibTex RIS Cite

Docking Studies of Natural Product Derived Carvacrol Type Aromatic Monoterpenes Against COVID-19 and Comparison with Used Synthetic Drugs: Potential of Carvacryl Acetate Against SARS-CoV-2 (COVID-19)

Year 2023, Volume: 12 Issue: 1, 1 - 14, 10.06.2023
https://doi.org/10.55007/dufed.1184096

Abstract

The COVID-19 pandemic that broken out in 2020 is becoming more worrying for the world. Although there is no 100 % success against COVID-19, certain synthetic drugs are currently used despite various side effects. Therefore, studies on the discovery of new treatment alternatives come to the fore. Studies so far show that natural products are still important resources for the discovery of new therapeutic agents. Plant-derived essential oils are complex volatiles composed of various phytochemicals, mostly containing compounds such as sesquiterpenes, monoterpenes, and phenylpropanoids. In this study, especially thymol and carvacrol compounds specific to the Lamiaceae (Labiate) family and aromatic monoterpenes derived from these compounds were modeled against COVID-19. Results were compared with remdesivir, hydroxychloroquine, and favipiravir used as synthetic drugs. Dock and molecular dynamics simulations analyzed these molecules’ potential inhibitor efficiency of the SARS-CoV2 Mpro. Lipinski parameters and Docking results were demonstrated that ligands carvacrol (2), carvacryl acetate (11) and cuminaldehyde (12) are potential inhibitors towards COVID-19. According to the results, it is seen that medicinal aromatic herbs, which contain these volatile components with the fewer side effects than synthetic drugs, have the potential to be used as supplements in the pharmaceutical industry.

References

  • TCSB. Republic of Turkey Ministry of Health, general directorate of public health, COVID-19 (SARS-CoV-2 infection) general ınformation, epidemiology and diagnosis, scientific advisory board work: Ankara, Turkey, 2020.
  • P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang, H. D. Chen, J. Chen, Y. Luo, H. Guo, R. D. Jiang, M. Q. Liu, Y. Chen, X. R. Shen, X. Wang, X. S. Zheng, K. Zhao, Q. J. Chen, F. Deng, L. L. Liu, B. Yan, F. X. Zhan, Y. Y. Wang, G. F. Xiao and Z. L. Shi, ‘‘A Pneumonia outbreak associated with a new coronavirus of probable bat origin,’’ Nature, vol. 579, pp. 270–273, 2020, doi: 10.1038/s41586-020-2012-7
  • M. Akdeniz, A. Ertas, I. Yener, M. Fırat and U. Kolak, ‘‘Phytochemical and biological investigations on two Nepeta species: Nepeta heliotropifolia and N. congesta subsp. cryptantha,’’ J. Food Biochem., Vol. 44, Article ID. e13124, 2020, doi: 10.1111/jfbc.13124
  • D. Bakir, M. Akdeniz, A. Ertas, M. A. Yilmaz, I. Yener, M. Firat and U. Kolak, ‘‘A GC–MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol,’’ J. Food Biochem., Vol. 44, Article ID. 13350, 2020, doi: 10.1111/jfbc.13350
  • S. Kocakaya-Ozhan, A Ertas, I Yener, B. Ercan, E. Varhan-Oral, M. Akdeniz, E. Kaplaner, G. Topcu and U. Kolak, ‘‘Selective in-vitro enzymes' inhibitory activities of fingerprints compounds of Salvia species and molecular docking simulations,’’ Iranian Journal of Pharmaceutical Research, vol. 19, pp. 187-198, 2020, doi: 10.22037/ijpr.2020.112498.13801
  • I. Yener, S. Kocakaya-Ozhan, A. Ertas, B. Ercan, E. Kaplaner E. Varhan-Oral, T. Yilmaz-Ozden, M. A. Yilmaz M. Ozturk and U. Kolak, ‘‘Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress,’’ Food Chem., vol. 27, Article ID. 127045. doi: 10.1016/j.foodchem.2020.127045
  • G. Mousseau, M. A. Clementz, W. N. Bakeman, N. Nagarsheth, M. Cameron, J. Shi, P. Baran, R. Fromentin, N. Chomont and S. T. Valente, ‘‘An analog of the natural steroidal alkaloid cortistatin a potently suppresses tat-dependent HIV transcription,’’ Cell Host Microbe, vol. 12, pp. 97-108, 2012, doi: 10.1016/j.chom.2012.05.016
  • N. E. Thomford, D. A. Senthebane, A. Rowe, D. Munro, P. Seele, A. Maroyi and K. Dzobo, ‘‘Natural products for drug discovery in the 21st century: Innovations for novel drug discovery,’’ Int. J. Mol. Sci., vol. 19, pp. 1578, 2018, doi: 10.3390/ijms19061578
  • E. C. Luna, I. S. Luna, L. Scotti, A. F. M. Monteiro, M. T. Scotti, R. O. de Moura, R. S. A. de Araújo, K. L. C. Monteiro, T. M. de Aquino, F. F. Ribeiro and F. J. B. Mendonca, ‘‘Active essential oils and their components in use against neglected diseases and arboviruses,’’ Oxid. Med. Cell. Longev., Vol. 2019, Article ID. 6587150, 2019, doi: 10.1155/2019/6587150
  • L. Ma and L. Yao, ‘‘Antiviral effects of plant-derived essential oils and their components: An updated review,’’ Molecules, vol. 25, Article ID. 2627, 2020, doi: 10.3390/molecules25112627
  • WHO., ‘‘In vitro screening of traditional medicines for anti-HIV activity: Memorandum from a WHO meeting,’’ Bulletin of the World Health Organization, vol. 67, pp. 613-618, 1989.
  • F. Bakkali, S. Averbeck and D. Averbeck, ‘‘Biological effects of essential oils: A review,’’ Food Chem. Toxicol., vol. 46, pp. 446-475, 2008, doi: 10.1016/j.fct.2007.09.106
  • N. Leyva-Lopez, E. P. Gutiérrez-Grijalva and G.Vazquez-Olivo, Essential oils of oregano: Biological activity beyond their antimicrobial properties,’’ Molecules, vol. 22, pp. 989, 2017, doi: 10.3390/molecules22060989
  • S. Burt, ‘‘Essential oils: Their antibacterial properties and potential applications in foods: A review,’’ Int. J. Food Microbiol., vol. 94, pp. 223-253, 2004, doi: 10.1016/j.ijfoodmicro.2004.03.022
  • C. Sanchez, R. Aznar and G. Sanchez, ‘‘The effect of carvacrol on enteric viruses,’’ Int. J. Food Microbiol., vol. 192, pp. 72-76, 2015, doi: 10.1016/j.ijfoodmicro.2014.09.028
  • F. Nazzaro, F. Fratianni, R. Coppola and V. de Feo, ‘‘Essential oils and antifungal activity,’’ Pharmaceuticals, vol. 10, Article ID. 86, 2017, doi: 10.3390/ph10040086
  • A. Al-Zubairi, M. Al-Mamary and E. Al-Ghasani, ‘‘The antibacterial, antifungal, and antioxidant activities of essential oil from different aromatic plants,’’ Glob. Adv. Res. J.Med. Med. Sci., vol. 6, pp. 224-233, 2017.
  • M. Valdivieso-Ugarte, C. Gomez-Llorente, J. Plaza-Díaz and A. Gil, ‘‘Antimicrobial, antioxidant, and ımmunomodulatory properties of essential oils: A systematic review,’’ Nutrients, vol. 11, Article ID. 2786, 2019, doi: 10.3390/nu11112786
  • S. Mediouni, J. A. Jablonski, S. Tsuda, A. Barsamian, C. Kessing, A. Richard, A. Biswas, F. Toledo, V. M. Andrade, Y. Even, M. Stevenson, T. Tellinghuisen, H. Choe, M. Cameron, T. D. Bannister and S. T. Valente, ‘‘Oregano oil and ıts principal component, carvacrol, ınhibit HIV-1 fusion into target cells,’’ J. Virol., vol. 94, Article ID. e00147-20, 2020, doi: 10.1128/JVI.00147-20
  • S. Agatonovic-Kustrin, C. K. Y. Chan, V. Gegechkori and D. W. Morton, ‘‘Models for skin and brain penetration of major components from essential oils used in aromatherapy for dementia patients,’’ J. Biomol. Struct. Dyn., vol. 38, pp. 2402-2411, 2020, doi: 10.1080/07391102.2019.1633408
  • M. M. Obaidat and J. F. Frank, ‘‘Inactivation of Escherichia coli O157:H7 on the intact and damaged portions of lettuce and spinach leaves by using allyl isothiocyanate, carvacrol, and cinnamaldehyde in vapor phase,’’ J. Food Prot., vol. 72, pp. 2046–2055, 2009, doi: 10.4315/0362-028X-72.10.2046
  • Y. Lu and C. Wu, ‘‘Reduction of Salmonella enterica contamination on grape tomatoes by washing with thyme oil, thymol, and carvacrol as compared with chlorine treatment,’’ J. Food Prot., vol. 73, pp 2270–2275, 2010, doi: 10.4315/0362-028X-73.12.2270
  • A. Nostro and T. Papalia, ‘‘Antimicrobial activity of carvacrol: current progress and future prospectives,’’ Recent Pat. Anti-Cancer Drug Discov., vol. 7, pp. 28-35, 2011, doi: 10.2174/157489112799829684
  • A. Guarda, J. F. Rubilar, J, Miltz and M. J. Galotto, ‘‘The antimicrobial activity of microencapsulated thymol and carvacrol,’’ Int. J. Food Microbiol., vol. 146, pp. 144-150, 2011, doi: 10.1016/j.ijfoodmicro.2011.02.011
  • M. R. Pilau, S. H. Alves, R. Weiblen, S. Arenhart, A. P. Cueto and L.T. Lovato, ‘‘Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses,’’ Braz. J. Microbiol., vol. 42, pp. 1616-1624, 2011, doi: 10.1590/S1517-83822011000400049
  • D. H. Gilling, M. Kitajima, J. R. Torrey and K. R. Bright, ‘‘Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus,’’ J. Appl. Microbiol., vol. 116, pp. 1149-1163, 2014, doi: 10.1111/jam.12453
  • N. A. Ibrahim, S. S. El-Hawary, M. Mohammed, M. Farid, N. A. M. Abdel-Wahed, M. Ali and E. A. W. El-Abd, ‘‘Chemical composition, antiviral against avian influenza (H5N1) virus and antimicrobial activities of the essential oils of the leaves and fruits of Fortunella margarita, lour. swingle, growing in Egypt,’’ J. Appl. Pharm. Sci., vol. 5, pp. 006-012, 2015, doi: 10.7324/JAPS.2015.50102
  • N. Pajaro-Castro, M. C. Flechas, R. Ocazionez, E. Stashenko and J. Olivero-Verbel, ‘‘Potential interaction of components from essential oils with dengue virus proteins,’’ Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 14, pp. 141-155, 2015.
  • S. Gavanji, S. S. Sayedipour, B. Larki and A. Bakhtari, ‘‘Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture,’’ J. Acute Med., vol. 5, pp. 62-68, 2015, doi: 10.1016/j.jacme.2015.07.001
  • J. Sharifi-Rad, B. Salehi, P. Schnitzler, S. A. Ayatollahi, F. Kobarfard, M. Fathi, M. Eisazadeh and M. Sharifi-Rad, ‘‘Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn,’’ Mol. Cell. Biol., vol. 63, pp. 42-47, 2017, doi: 10.14715/cmb/2017.63.8.10
  • V. Cagno, B. Sgorbini, C. Sanna, C. Cagliero, M. Ballero, A. Civra, M. Donalisio, C. Bicchi, D. Lembo and P. Rubiolo, ‘‘In vitro anti-herpes simplex virus-2 activity of Salvia desoleana Atzei & V. Picci essential oil,’’ PLoS One, vol. 12, Article ID. e0172322, 2017, doi: 10.1371/journal.pone.0172322
  • M. M. Nagy, D. A. Al-Mahdy, O. M. Abd El Aziz, A. M. Kandil, M. A. Tantawy and T. S. M. El Alfy, ‘‘Chemical composition and antiviral activity of essential oils from Citrus reshni hort. ex tanaka (Cleopatra mandarin) cultivated in Egypt,’’ J. Essent. Oil-Bear. Plants, vol. 21, pp. 264-272, 2018, doi: 10.1080/0972060X.2018.1436986
  • Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L. W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, and H. Yang, ‘‘Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,’’ Nature, vol. 582, pp. 289-293, 2020, doi: 10.1038/s41586-020-2223-y
  • Y. C. Chang, Y. A. Tung, K. H. Lee, T. F. Chen, Y. C. Hsiao, H. C. Chang, T. T. Hsieh, C. H. Su, S. S. Wang, J. Y. Yu, S. S. Shih, Y. H. Lin, Y. H. Lin, Y. C. E. Tu, C. H. Hsu, H. F. Juan, C. H. Tung and C. Y. Chen, ‘‘Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking,’’ Preprints, 2020, doi: 10.20944/preprints202002.0242.v2
  • S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati and S. Soetjipto, ‘‘Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study,’’ Preprints, 2020, doi: 10.20944/preprints202003.0226.v1
  • A. Srivastava, A. Kumar, G. Tiwari, R. Kumar and N. Misra, ‘‘In silico investigations on the potential inhibitors for COVID-19 protease,’’ Chemical Physics, 2020, doi: 10.48550/arXiv.2003.10642
  • PDB., ‘‘Protein Data Bank [Internet]’’, 2022, Available from: https://www.rcsb.org/document-search/CoV%20Mpro,%20quantity%206lu7
  • Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. M. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. M. Wang and P. Kollman, ‘‘A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations,’’ J. Comput. Chem., vol. 24, pp. 1999-2012, 2003, doi: 10.1002/jcc.10349
  • C. I. Bayly, P. Cieplak, W. Cornell and P. A. Kollman, ‘‘A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model,’’ J. Phys. Chem., vol. 97, pp. 10269-10280, 1993, doi: 10.1021/j100142a004
  • D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Jr. Merz, K. M. A. Onufriev, C. Simmerling, B. Wang and R. J. Woods, ‘‘The Amber biomolecular simulation programs,’’ J. Comput. Chem., vol. 26, pp. 1668 –1688, 2005, doi: 10.1002/jcc.20290
  • D. A. Case, T. A. Darden, T. E. Cheatham, C. L. Simmerling, J. Wang, R. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. P. Roberts, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, C. Q. Gohlke, X. Ye, J. Wang, M. J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, C. H. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. A. Kollman, ‘‘Amber 11.,’’ University of California, San Francisco, 2010.
  • J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, ‘‘Development and testing of a general amber force field,’’ J. Comput. Chem., vol. 26, pp. 114-114, 2004, doi: 10.1002/jcc.20035
  • P. T. Lang, D. Moustakas, S. Brozell, N. Carrascal, S. Mukherjee, S. Pegg, K. Raha, D. Shivakumar, R. Rizzo, D. Case, B. Shoichet and I. Kuntz, ‘‘Dock 6.1.’’ University of California, San Francisco, 2007.
  • Accelrys Software Inc. ‘‘Discovery Studio Modeling Environment,’’ Release 2.5.1, San Diego, CA., 2009.
  • C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, ‘‘Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,’’ Adv. Drug Deliv. Rev., vol. 46, pp. 3-25, 2001, doi: 10.1016/S0169-409X(96)00423-1
  • A. Kumar, G. Choudhir, S. K. Shukla, M. Sharma, P. Tyagi, A. Bhushan and M. Rathore, ‘‘Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches,’’ J. Biomol. Struct. Dyn., vol. 39, pp. 3760-3770, 2020, doi: 10.1080/07391102.2020.1772112

Doğal Ürün Türevli Karvakrol Tipi Aromatik Monoterpenlerin COVID-19'a Moleküler Modelleme Çalışmaları ve Kullanılmış Sentetik İlaçlarla Karşılaştırılması: Karvakril Asetatın SARS-CoV-2'ye (COVID-19) Karşı Potansiyeli

Year 2023, Volume: 12 Issue: 1, 1 - 14, 10.06.2023
https://doi.org/10.55007/dufed.1184096

Abstract

2020 yılında baş gösteren COVID-19 pandemisi giderek Dünya için daha endişe verici hal almaktadır. COVİD-19'a karşı %100 başarı alınamasa da şuan çeşitli yan etkilerine rağmen belli sentetik ilaçlar kullanılmaktadır. Bu nedenle, yeni tedavi alternatiflerinin keşfi ile ilgili çalışmalar ön plana çıkmaktadır. Şimdiye kadar yapılan çalışmalar doğal ürünlerin, yeni terapötik ajanların keşfi için hala önemli kaynaklar olduğunu göstermektedir. Bitki türevi uçucu yağlar, çeşitli fitokimyasallardan oluşan karmaşık uçucular olup, daha çok monoterpenler, seskiterpenler ve fenilpropanoidler vb. bileşikleri ihtiva eder. Bu çalışmada özellikle Labiate familyasına özgü timol ve karvakrol bileşikleri ile bu bileşiklerin türevi aromatik monoterpenlerin COVİD-19'a karşı moleküller modellemeleri yapılmıştır. Sonuçlar sentetik ilaç olarak kullanılan remdesivir, hydroxychloroquine ve favipiravir ile karşılaştırılmıştır. Dock ve moleküler dinamik simülasyonları, bu moleküllerin SARS-CoV2 Mpro'nun potansiyel inhibitör etkinliğini analiz edilmiştir. Lipinski parametreleri ve Docking sonuçları, karvakrol (2), karvakril asetat (11) ve kuminaldehit (12) ligandlarının COVID-19'a karşı potansiyel inhibitörler olduğunu göstermiştir. Sonuçlara göre bu uçucu bileşenleri içeren, sentetik ilaçlara göre yan etkileri çok az olan, tıbbi aromatic bitkilerin ilaç sanayide takviye ürün olarak kullanılma potansiyeli olduğu görülmektedir.

References

  • TCSB. Republic of Turkey Ministry of Health, general directorate of public health, COVID-19 (SARS-CoV-2 infection) general ınformation, epidemiology and diagnosis, scientific advisory board work: Ankara, Turkey, 2020.
  • P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang, H. D. Chen, J. Chen, Y. Luo, H. Guo, R. D. Jiang, M. Q. Liu, Y. Chen, X. R. Shen, X. Wang, X. S. Zheng, K. Zhao, Q. J. Chen, F. Deng, L. L. Liu, B. Yan, F. X. Zhan, Y. Y. Wang, G. F. Xiao and Z. L. Shi, ‘‘A Pneumonia outbreak associated with a new coronavirus of probable bat origin,’’ Nature, vol. 579, pp. 270–273, 2020, doi: 10.1038/s41586-020-2012-7
  • M. Akdeniz, A. Ertas, I. Yener, M. Fırat and U. Kolak, ‘‘Phytochemical and biological investigations on two Nepeta species: Nepeta heliotropifolia and N. congesta subsp. cryptantha,’’ J. Food Biochem., Vol. 44, Article ID. e13124, 2020, doi: 10.1111/jfbc.13124
  • D. Bakir, M. Akdeniz, A. Ertas, M. A. Yilmaz, I. Yener, M. Firat and U. Kolak, ‘‘A GC–MS method validation for quantitative investigation of some chemical markers in Salvia hypargeia Fisch. & C.A. Mey. of Turkey: Enzyme inhibitory potential of ferruginol,’’ J. Food Biochem., Vol. 44, Article ID. 13350, 2020, doi: 10.1111/jfbc.13350
  • S. Kocakaya-Ozhan, A Ertas, I Yener, B. Ercan, E. Varhan-Oral, M. Akdeniz, E. Kaplaner, G. Topcu and U. Kolak, ‘‘Selective in-vitro enzymes' inhibitory activities of fingerprints compounds of Salvia species and molecular docking simulations,’’ Iranian Journal of Pharmaceutical Research, vol. 19, pp. 187-198, 2020, doi: 10.22037/ijpr.2020.112498.13801
  • I. Yener, S. Kocakaya-Ozhan, A. Ertas, B. Ercan, E. Kaplaner E. Varhan-Oral, T. Yilmaz-Ozden, M. A. Yilmaz M. Ozturk and U. Kolak, ‘‘Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress,’’ Food Chem., vol. 27, Article ID. 127045. doi: 10.1016/j.foodchem.2020.127045
  • G. Mousseau, M. A. Clementz, W. N. Bakeman, N. Nagarsheth, M. Cameron, J. Shi, P. Baran, R. Fromentin, N. Chomont and S. T. Valente, ‘‘An analog of the natural steroidal alkaloid cortistatin a potently suppresses tat-dependent HIV transcription,’’ Cell Host Microbe, vol. 12, pp. 97-108, 2012, doi: 10.1016/j.chom.2012.05.016
  • N. E. Thomford, D. A. Senthebane, A. Rowe, D. Munro, P. Seele, A. Maroyi and K. Dzobo, ‘‘Natural products for drug discovery in the 21st century: Innovations for novel drug discovery,’’ Int. J. Mol. Sci., vol. 19, pp. 1578, 2018, doi: 10.3390/ijms19061578
  • E. C. Luna, I. S. Luna, L. Scotti, A. F. M. Monteiro, M. T. Scotti, R. O. de Moura, R. S. A. de Araújo, K. L. C. Monteiro, T. M. de Aquino, F. F. Ribeiro and F. J. B. Mendonca, ‘‘Active essential oils and their components in use against neglected diseases and arboviruses,’’ Oxid. Med. Cell. Longev., Vol. 2019, Article ID. 6587150, 2019, doi: 10.1155/2019/6587150
  • L. Ma and L. Yao, ‘‘Antiviral effects of plant-derived essential oils and their components: An updated review,’’ Molecules, vol. 25, Article ID. 2627, 2020, doi: 10.3390/molecules25112627
  • WHO., ‘‘In vitro screening of traditional medicines for anti-HIV activity: Memorandum from a WHO meeting,’’ Bulletin of the World Health Organization, vol. 67, pp. 613-618, 1989.
  • F. Bakkali, S. Averbeck and D. Averbeck, ‘‘Biological effects of essential oils: A review,’’ Food Chem. Toxicol., vol. 46, pp. 446-475, 2008, doi: 10.1016/j.fct.2007.09.106
  • N. Leyva-Lopez, E. P. Gutiérrez-Grijalva and G.Vazquez-Olivo, Essential oils of oregano: Biological activity beyond their antimicrobial properties,’’ Molecules, vol. 22, pp. 989, 2017, doi: 10.3390/molecules22060989
  • S. Burt, ‘‘Essential oils: Their antibacterial properties and potential applications in foods: A review,’’ Int. J. Food Microbiol., vol. 94, pp. 223-253, 2004, doi: 10.1016/j.ijfoodmicro.2004.03.022
  • C. Sanchez, R. Aznar and G. Sanchez, ‘‘The effect of carvacrol on enteric viruses,’’ Int. J. Food Microbiol., vol. 192, pp. 72-76, 2015, doi: 10.1016/j.ijfoodmicro.2014.09.028
  • F. Nazzaro, F. Fratianni, R. Coppola and V. de Feo, ‘‘Essential oils and antifungal activity,’’ Pharmaceuticals, vol. 10, Article ID. 86, 2017, doi: 10.3390/ph10040086
  • A. Al-Zubairi, M. Al-Mamary and E. Al-Ghasani, ‘‘The antibacterial, antifungal, and antioxidant activities of essential oil from different aromatic plants,’’ Glob. Adv. Res. J.Med. Med. Sci., vol. 6, pp. 224-233, 2017.
  • M. Valdivieso-Ugarte, C. Gomez-Llorente, J. Plaza-Díaz and A. Gil, ‘‘Antimicrobial, antioxidant, and ımmunomodulatory properties of essential oils: A systematic review,’’ Nutrients, vol. 11, Article ID. 2786, 2019, doi: 10.3390/nu11112786
  • S. Mediouni, J. A. Jablonski, S. Tsuda, A. Barsamian, C. Kessing, A. Richard, A. Biswas, F. Toledo, V. M. Andrade, Y. Even, M. Stevenson, T. Tellinghuisen, H. Choe, M. Cameron, T. D. Bannister and S. T. Valente, ‘‘Oregano oil and ıts principal component, carvacrol, ınhibit HIV-1 fusion into target cells,’’ J. Virol., vol. 94, Article ID. e00147-20, 2020, doi: 10.1128/JVI.00147-20
  • S. Agatonovic-Kustrin, C. K. Y. Chan, V. Gegechkori and D. W. Morton, ‘‘Models for skin and brain penetration of major components from essential oils used in aromatherapy for dementia patients,’’ J. Biomol. Struct. Dyn., vol. 38, pp. 2402-2411, 2020, doi: 10.1080/07391102.2019.1633408
  • M. M. Obaidat and J. F. Frank, ‘‘Inactivation of Escherichia coli O157:H7 on the intact and damaged portions of lettuce and spinach leaves by using allyl isothiocyanate, carvacrol, and cinnamaldehyde in vapor phase,’’ J. Food Prot., vol. 72, pp. 2046–2055, 2009, doi: 10.4315/0362-028X-72.10.2046
  • Y. Lu and C. Wu, ‘‘Reduction of Salmonella enterica contamination on grape tomatoes by washing with thyme oil, thymol, and carvacrol as compared with chlorine treatment,’’ J. Food Prot., vol. 73, pp 2270–2275, 2010, doi: 10.4315/0362-028X-73.12.2270
  • A. Nostro and T. Papalia, ‘‘Antimicrobial activity of carvacrol: current progress and future prospectives,’’ Recent Pat. Anti-Cancer Drug Discov., vol. 7, pp. 28-35, 2011, doi: 10.2174/157489112799829684
  • A. Guarda, J. F. Rubilar, J, Miltz and M. J. Galotto, ‘‘The antimicrobial activity of microencapsulated thymol and carvacrol,’’ Int. J. Food Microbiol., vol. 146, pp. 144-150, 2011, doi: 10.1016/j.ijfoodmicro.2011.02.011
  • M. R. Pilau, S. H. Alves, R. Weiblen, S. Arenhart, A. P. Cueto and L.T. Lovato, ‘‘Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses,’’ Braz. J. Microbiol., vol. 42, pp. 1616-1624, 2011, doi: 10.1590/S1517-83822011000400049
  • D. H. Gilling, M. Kitajima, J. R. Torrey and K. R. Bright, ‘‘Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus,’’ J. Appl. Microbiol., vol. 116, pp. 1149-1163, 2014, doi: 10.1111/jam.12453
  • N. A. Ibrahim, S. S. El-Hawary, M. Mohammed, M. Farid, N. A. M. Abdel-Wahed, M. Ali and E. A. W. El-Abd, ‘‘Chemical composition, antiviral against avian influenza (H5N1) virus and antimicrobial activities of the essential oils of the leaves and fruits of Fortunella margarita, lour. swingle, growing in Egypt,’’ J. Appl. Pharm. Sci., vol. 5, pp. 006-012, 2015, doi: 10.7324/JAPS.2015.50102
  • N. Pajaro-Castro, M. C. Flechas, R. Ocazionez, E. Stashenko and J. Olivero-Verbel, ‘‘Potential interaction of components from essential oils with dengue virus proteins,’’ Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 14, pp. 141-155, 2015.
  • S. Gavanji, S. S. Sayedipour, B. Larki and A. Bakhtari, ‘‘Antiviral activity of some plant oils against herpes simplex virus type 1 in Vero cell culture,’’ J. Acute Med., vol. 5, pp. 62-68, 2015, doi: 10.1016/j.jacme.2015.07.001
  • J. Sharifi-Rad, B. Salehi, P. Schnitzler, S. A. Ayatollahi, F. Kobarfard, M. Fathi, M. Eisazadeh and M. Sharifi-Rad, ‘‘Susceptibility of herpes simplex virus type 1 to monoterpenes thymol, carvacrol, p-cymene and essential oils of Sinapis arvensis L., Lallemantia royleana Benth. and Pulicaria vulgaris Gaertn,’’ Mol. Cell. Biol., vol. 63, pp. 42-47, 2017, doi: 10.14715/cmb/2017.63.8.10
  • V. Cagno, B. Sgorbini, C. Sanna, C. Cagliero, M. Ballero, A. Civra, M. Donalisio, C. Bicchi, D. Lembo and P. Rubiolo, ‘‘In vitro anti-herpes simplex virus-2 activity of Salvia desoleana Atzei & V. Picci essential oil,’’ PLoS One, vol. 12, Article ID. e0172322, 2017, doi: 10.1371/journal.pone.0172322
  • M. M. Nagy, D. A. Al-Mahdy, O. M. Abd El Aziz, A. M. Kandil, M. A. Tantawy and T. S. M. El Alfy, ‘‘Chemical composition and antiviral activity of essential oils from Citrus reshni hort. ex tanaka (Cleopatra mandarin) cultivated in Egypt,’’ J. Essent. Oil-Bear. Plants, vol. 21, pp. 264-272, 2018, doi: 10.1080/0972060X.2018.1436986
  • Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L. W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, and H. Yang, ‘‘Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors,’’ Nature, vol. 582, pp. 289-293, 2020, doi: 10.1038/s41586-020-2223-y
  • Y. C. Chang, Y. A. Tung, K. H. Lee, T. F. Chen, Y. C. Hsiao, H. C. Chang, T. T. Hsieh, C. H. Su, S. S. Wang, J. Y. Yu, S. S. Shih, Y. H. Lin, Y. H. Lin, Y. C. E. Tu, C. H. Hsu, H. F. Juan, C. H. Tung and C. Y. Chen, ‘‘Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking,’’ Preprints, 2020, doi: 10.20944/preprints202002.0242.v2
  • S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati and S. Soetjipto, ‘‘Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study,’’ Preprints, 2020, doi: 10.20944/preprints202003.0226.v1
  • A. Srivastava, A. Kumar, G. Tiwari, R. Kumar and N. Misra, ‘‘In silico investigations on the potential inhibitors for COVID-19 protease,’’ Chemical Physics, 2020, doi: 10.48550/arXiv.2003.10642
  • PDB., ‘‘Protein Data Bank [Internet]’’, 2022, Available from: https://www.rcsb.org/document-search/CoV%20Mpro,%20quantity%206lu7
  • Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. M. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. M. Wang and P. Kollman, ‘‘A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations,’’ J. Comput. Chem., vol. 24, pp. 1999-2012, 2003, doi: 10.1002/jcc.10349
  • C. I. Bayly, P. Cieplak, W. Cornell and P. A. Kollman, ‘‘A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model,’’ J. Phys. Chem., vol. 97, pp. 10269-10280, 1993, doi: 10.1021/j100142a004
  • D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Jr. Merz, K. M. A. Onufriev, C. Simmerling, B. Wang and R. J. Woods, ‘‘The Amber biomolecular simulation programs,’’ J. Comput. Chem., vol. 26, pp. 1668 –1688, 2005, doi: 10.1002/jcc.20290
  • D. A. Case, T. A. Darden, T. E. Cheatham, C. L. Simmerling, J. Wang, R. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. P. Roberts, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, C. Q. Gohlke, X. Ye, J. Wang, M. J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, C. H. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. A. Kollman, ‘‘Amber 11.,’’ University of California, San Francisco, 2010.
  • J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, ‘‘Development and testing of a general amber force field,’’ J. Comput. Chem., vol. 26, pp. 114-114, 2004, doi: 10.1002/jcc.20035
  • P. T. Lang, D. Moustakas, S. Brozell, N. Carrascal, S. Mukherjee, S. Pegg, K. Raha, D. Shivakumar, R. Rizzo, D. Case, B. Shoichet and I. Kuntz, ‘‘Dock 6.1.’’ University of California, San Francisco, 2007.
  • Accelrys Software Inc. ‘‘Discovery Studio Modeling Environment,’’ Release 2.5.1, San Diego, CA., 2009.
  • C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, ‘‘Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,’’ Adv. Drug Deliv. Rev., vol. 46, pp. 3-25, 2001, doi: 10.1016/S0169-409X(96)00423-1
  • A. Kumar, G. Choudhir, S. K. Shukla, M. Sharma, P. Tyagi, A. Bhushan and M. Rathore, ‘‘Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches,’’ J. Biomol. Struct. Dyn., vol. 39, pp. 3760-3770, 2020, doi: 10.1080/07391102.2020.1772112
There are 46 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Research Articles
Authors

Şafak Özhan Kocakaya 0000-0001-6836-7667

Abdulselam Ertaş 0000-0002-2193-8386

İsmail Yener 0000-0002-0988-9462

Enes Arıca 0000-0002-8663-4826

Demet Dincel 0000-0001-8319-9307

Early Pub Date April 1, 2023
Publication Date June 10, 2023
Submission Date October 5, 2022
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

IEEE Ş. Özhan Kocakaya, A. Ertaş, İ. Yener, E. Arıca, and D. Dincel, “Docking Studies of Natural Product Derived Carvacrol Type Aromatic Monoterpenes Against COVID-19 and Comparison with Used Synthetic Drugs: Potential of Carvacryl Acetate Against SARS-CoV-2 (COVID-19)”, DUFED, vol. 12, no. 1, pp. 1–14, 2023, doi: 10.55007/dufed.1184096.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx