Research Article
BibTex RIS Cite

Numerical and Experimental Investigation of Design Parameters for Efficiency Increase of Banki Turbine

Year 2023, Volume: 12 Issue: 1, 49 - 64, 10.06.2023
https://doi.org/10.55007/dufed.1243168

Abstract

In this study, it is aimed to create a new runner model by optimizing the number of turbine blades in order to increase the efficiency of the Banki hydraulic turbine. The design values of the turbine, whose flow and head values are known, were calculated analytically. There is no accepted analytical method in the literature for the number of blades. Numerical analysis of this runner was carried out by ANSYS CFX software by testing 7 different blade numbers and 30 bladed runner with the highest efficiency were produced from the analysis results. The numerical study of the turbine model, which was created based on 0.2 m3 flow and 65 meters head values, was verified by experimental tests. Numerical and experimental studies were repeated for 30 bladed turbines to find efficiency at different flow rates. The turbine reached a maximum efficiency of 74.91% in experimental tests and 76.85% in CFD analysis. It has been seen that these results are in agreement with the numerical and experimental test results and the maximum efficiency value is realized in a certain flow range. With the proposed numerical analysis method, the number of blades that give the highest efficiency can be determined without the need to manufacture different models.

References

  • J. D. Andrade, C. Curiel, F. Kenyery, O. Aguilon, A. Vasquezand, M. Asuaje, “Numerical Investigation of the Internal Flow in a Banki Turbine”. International Journal of Rotating Machinery, vol. 2011, 2011, doi:10.1155/2011/841214.
  • A. N. Bilal, “Design of High Efficiency Cross-Flow Turbine for Hydro-PowerPlant,” International Journal of Engineering and Advanced Technology, vol. 2, no 3, pp. 308-311, 2013.
  • M. Patel, N. Oza, and K. Patel, “Computational Fluid Dynamic Analysis of Cross Flow Turbine,” International Journal of InnovativeResearch in Science Engineering and Technology, vol. 5, no 9, 2016, DOI:10.15680/IJIRSET.2016.0509059.
  • M. San and N. Nyi, “Design of Cross Flow Turbine and Analysis of Runner's Dimensions on Various Head and Flow Rate,” International Journal of Scientific and Research Publications, vol 8, no 8, pp. 586-592, 2018, DOI: 10.29322/IJSRP.8.8.2018.p8076.
  • A. Dragomirescu and M. Schiaua, “Experimental and numerical investigation of a Banki turbine operating far away from design point,” Sustainable Solutions for Energy and Environment, EENVIRO 2016, Bucharest, Romania, 26-28 October 2016.
  • V. Sammartano, C. Arico, A. Carravetta, O. Fecarottaand T. Tucciarelli, “Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis,” Energies 2013, 6, 2362-2385, doi:10.3390/en6052362.
  • R. Adhikari and D. Wood, “The Design of High Efficiency Cross flow Hydro Turbines: A Review and Extension”, Energies, vol. 11, no. 2, 2018, https://doi.org/10.3390 /en11020267.
  • S. Sirojuddin, L. K. Wardhana and A. Kholil, “Investigation of the draft tube variations against the first stage and the second stage flow of banki turbine”, IOP Conference Series: Materials Science and Engineering. 1098, 062077, 2021, doi:10.1088/1757899X/1098/6/062077.
  • TS EN ISO/IEC 17025, Deney ve kalibrasyon laboratuvarlarının yeterliliği için genel şartlar, TSE, 2017.
  • İ. Çallı, Uygulamalı Hidrolik Makineler, Ankara, Seçkin Yayınevi, 3. Baskı, 2017.
  • T. Chandran, P. Surendran and J. Chandapillai, “Design methodology and structural analysis of crossflow türbine,”Innovative Solutions in Flow Measurement and Control - Oil, WaterandGas” August28-30, 2017, FCRI, Palakkad, Kerala, India.
  • C. Özgür, Su Makinaları Dersleri, İstanbul, Teknik Üniversite Matbaası, 3. Baskı, 1977.
  • Entec Consulting&Engineering, Cross Flow Design, Switzerland, 2003.
  • H. Başeşme, Hidroelektrik Santraller ve Hidroelektrik Santral Tesisleri, Ankara, EÜAŞ yayınları, 2. Baskı, 2003.
  • Autodesk Inc., Inventor 2022 Professioal, USA, 2022.
  • Ansys Inc, CFX, USA, 2018.
  • Ansys Inc, Fluent User Guide Manual, USA, 2018.
  • D. Popescu, C. Popescu and A. Dragomirescu, “Flow control in Banki turbines,” 4th International Conference on Energy and Environment Research, ICEER 2017, Porto, Portugal, 2017, doi:10.1016/j.egypro.2017.10.272
  • B. M. Uyar, J. Caoand Z. Wang, “Experimentaland CFD simulation validation performance analysis of Francis turbine,” IOP Conf. Series: Earth and Environmental Science, 1037, 012003,2022, doi:10.1088/1755-1315/1037/1/012003
  • Md. M. Kamal, G. Saini, A. Abbas and V. Prasad, “Prediction and analysis of the cavitating performance of a Francis türbine under different loads,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, doi: 10.1080 /15567036.2021.2009941

Banki Türbini Verimlilik Artışı için Tasarım Parametrelerinin Sayısal ve Deneysel Olarak İncelenmesi

Year 2023, Volume: 12 Issue: 1, 49 - 64, 10.06.2023
https://doi.org/10.55007/dufed.1243168

Abstract

Bu çalışmada, Banki hidrolik türbininin verimini artırmak için türbin kanat sayısını optimize edip yeni çark modeli oluşturmak amaçlanmıştır. Debi ve düşü değerleri bilinen türbinin tasarım değerleri analitik yollarla hesaplanmıştır. Kanat sayısı için literatürde kabul gören bir analitik yol bulunmamaktadır. 7 farklı kanat sayısı denenerek bu çarkın sayısal analizi ANSYS CFX yazılımıyla gerçekleştirilmiş ve analiz sonucu değerlerinden en yüksek verime sahip olan 30 kanatlı çark imal edilmiştir. 0,2 m3 debi ve 65 metre düşü değerleri baz alınarak oluşturulan türbin modelinin sayısal çalışması deneysel testler ile doğrulanmıştır. Sayısal ve deneysel çalışmalar 30 kanatlı türbin için farklı debilerde verimi bulmak için tekrarlanmıştır. Türbin deneysel testlerde %74,91, HAD analizleri sonucunda %76,85 maksimum verim değerine ulaşmıştır. Bu sonuçlarla sayısal ve deneysel test sonuçlarının uyum içinde olduğu ve maksimum verim değerinin belli debi aralığında gerçekleştiği görülmüştür. Önerilen sayısal analiz yöntemiyle en yüksek verimi veren kanat sayısı farklı modelleri imal etmeye gerek kalmadan belirlenebilir.

References

  • J. D. Andrade, C. Curiel, F. Kenyery, O. Aguilon, A. Vasquezand, M. Asuaje, “Numerical Investigation of the Internal Flow in a Banki Turbine”. International Journal of Rotating Machinery, vol. 2011, 2011, doi:10.1155/2011/841214.
  • A. N. Bilal, “Design of High Efficiency Cross-Flow Turbine for Hydro-PowerPlant,” International Journal of Engineering and Advanced Technology, vol. 2, no 3, pp. 308-311, 2013.
  • M. Patel, N. Oza, and K. Patel, “Computational Fluid Dynamic Analysis of Cross Flow Turbine,” International Journal of InnovativeResearch in Science Engineering and Technology, vol. 5, no 9, 2016, DOI:10.15680/IJIRSET.2016.0509059.
  • M. San and N. Nyi, “Design of Cross Flow Turbine and Analysis of Runner's Dimensions on Various Head and Flow Rate,” International Journal of Scientific and Research Publications, vol 8, no 8, pp. 586-592, 2018, DOI: 10.29322/IJSRP.8.8.2018.p8076.
  • A. Dragomirescu and M. Schiaua, “Experimental and numerical investigation of a Banki turbine operating far away from design point,” Sustainable Solutions for Energy and Environment, EENVIRO 2016, Bucharest, Romania, 26-28 October 2016.
  • V. Sammartano, C. Arico, A. Carravetta, O. Fecarottaand T. Tucciarelli, “Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis,” Energies 2013, 6, 2362-2385, doi:10.3390/en6052362.
  • R. Adhikari and D. Wood, “The Design of High Efficiency Cross flow Hydro Turbines: A Review and Extension”, Energies, vol. 11, no. 2, 2018, https://doi.org/10.3390 /en11020267.
  • S. Sirojuddin, L. K. Wardhana and A. Kholil, “Investigation of the draft tube variations against the first stage and the second stage flow of banki turbine”, IOP Conference Series: Materials Science and Engineering. 1098, 062077, 2021, doi:10.1088/1757899X/1098/6/062077.
  • TS EN ISO/IEC 17025, Deney ve kalibrasyon laboratuvarlarının yeterliliği için genel şartlar, TSE, 2017.
  • İ. Çallı, Uygulamalı Hidrolik Makineler, Ankara, Seçkin Yayınevi, 3. Baskı, 2017.
  • T. Chandran, P. Surendran and J. Chandapillai, “Design methodology and structural analysis of crossflow türbine,”Innovative Solutions in Flow Measurement and Control - Oil, WaterandGas” August28-30, 2017, FCRI, Palakkad, Kerala, India.
  • C. Özgür, Su Makinaları Dersleri, İstanbul, Teknik Üniversite Matbaası, 3. Baskı, 1977.
  • Entec Consulting&Engineering, Cross Flow Design, Switzerland, 2003.
  • H. Başeşme, Hidroelektrik Santraller ve Hidroelektrik Santral Tesisleri, Ankara, EÜAŞ yayınları, 2. Baskı, 2003.
  • Autodesk Inc., Inventor 2022 Professioal, USA, 2022.
  • Ansys Inc, CFX, USA, 2018.
  • Ansys Inc, Fluent User Guide Manual, USA, 2018.
  • D. Popescu, C. Popescu and A. Dragomirescu, “Flow control in Banki turbines,” 4th International Conference on Energy and Environment Research, ICEER 2017, Porto, Portugal, 2017, doi:10.1016/j.egypro.2017.10.272
  • B. M. Uyar, J. Caoand Z. Wang, “Experimentaland CFD simulation validation performance analysis of Francis turbine,” IOP Conf. Series: Earth and Environmental Science, 1037, 012003,2022, doi:10.1088/1755-1315/1037/1/012003
  • Md. M. Kamal, G. Saini, A. Abbas and V. Prasad, “Prediction and analysis of the cavitating performance of a Francis türbine under different loads,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, doi: 10.1080 /15567036.2021.2009941
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Oğuzhan Bendeş 0000-0002-2722-1212

Buğra Yılmaz 0000-0001-6799-4749

Faruk Koç 0000-0002-8717-1165

Adem Yıldız 0000-0001-6534-5737

Early Pub Date May 29, 2023
Publication Date June 10, 2023
Submission Date February 3, 2023
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

IEEE O. Bendeş, B. Yılmaz, F. Koç, and A. Yıldız, “Banki Türbini Verimlilik Artışı için Tasarım Parametrelerinin Sayısal ve Deneysel Olarak İncelenmesi”, DUFED, vol. 12, no. 1, pp. 49–64, 2023, doi: 10.55007/dufed.1243168.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx