Review
BibTex RIS Cite

Bulanık Küme ve Bulanık Sayı: Uygulamalarla Aritmetik İşlemler

Year 2024, Volume: 13 Issue: 2, 223 - 247, 30.12.2024
https://doi.org/10.55007/dufed.1441147

Abstract

Klasik mantıkta ifadeler sadece “doğru” veya “yanlış” olarak ifade edilen iki değerli karar verme yapısına sahip olduğundan belirsizlik durumlarını inceleyemez. Buna karşın gerçek dünyadaki problemler genellikle kesinlik içermemektedir. Bulanık mantık ise insanların günlük hayatta çok yönlü düşünme ve karar verme mekanizmasına benzeyen, kesin olmayan durum ve olaylarla ilgilenen bir sistemdir. Bulanık mantık ilk defa matematiksel olarak, Zadeh’in (1965) çalışmasında ortaya atılmıştır. Klasik mantığın aksine bulanık mantık gerçek dünya problemlerinin içinde bulunan belirsizliğin incelenmesini ve matematiksel olarak modellenmesini sağladığı için kısa sürede pek çok alanda kullanılan bir araç olmuştur. Bu nedenle, bulanık küme teorisine dayanan bulanık mantık ile ilgili kavramların iyi anlaşılması ve bulanık sayılara dayalı olarak yapılan temel aritmetik işlemlerin doğru yapılması önemlidir. Buradan hareketle bu çalışmada öncelikle bulanık mantıkla ilgili temel tanım ve kavramlar anlatılmıştır. Daha sonra ise bulanık sayılarla aritmetik işlemler yapmanın mantığını açıklayabilmek için hem kesikli bulanık sayılarla hem de sürekli bulanık sayılarla aritmetik işlemler örneklerle incelenmiştir.

References

  • A. A. Vargeloğlu, “Sezgisel kümelere dayalı bulanık regresyon analizi ve uygulamaları,” Yüksek lisans tezi, İstatistik, Gazi Üniversitesi, Ankara, Türkiye, 2020.
  • L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, 1965
  • L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—I,” Information Sciences, vol. 8, no. 3, pp. 199-249, 1975.
  • G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and its Applications. New York, Jersey: Prentice Hall PTR, 1995.
  • N. Baykal and T. Beyan, Bulanık Mantık Uzman Sistemler ve Denetleyiciler.1sted, Ankara: Bıçaklar Kitabevi, 2004.
  • M. B. Başkır, “Bulanık kalite fonksiyon yayılımı yaklaşımının iyileştirilmesi ve uygulamaları,” Doktora tezi, İstatistik, Ankara Üniversitesi, Ankara, Türkiye,2011.
  • J. C. Bezdek, “Numerical taxonomy with fuzzy sets,” Journal of Mathematical Biology, vol. 1, pp. 57-71, 1974.
  • E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Human-Computer Studies, vol. 51, no. 2, pp. 135-147, 1999.
  • P. Hajek, L. Godo and F. Esteva, “Fuzzy logic and probability,” presented at Eleventh Conference on Uncertainty in Artificial Intelligence, Canada, from August 18th to August 20th, pp. 237-244, 1995.
  • J. Lukasiewicz, “Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls [Philosophical Remarks on Many-Valued Systems of Propositional Logic],”Comptes Rendus Des Séances De La Société Des Sciences Et Des Lettres De Varsovie Cl III, vol. 23, pp. 51–77, 1930.
  • D. Dubois and H. Prade, “Operations in a fuzzy-valued logic,” Information and Control, vol. 43, no. 2, pp. 224-240, 1979.
  • W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,”Z. Physik, vol. 43, pp. 172–198, 1927.
  • O. Castilloand P. Melin, “Type-1 fuzzy logic,”in Type-2 Fuzzy Logic: Theory and Applications, Berlin, Heidelberg:Springer,2008.
  • D. Duboisand H. Prade, “Fuzzy Sets and Systems: Theory and Applications,”United States of America: Academic Press INC,1980.
  • Y. Kocatürk, “Bulanık değişkenler ve bulanık yenileme süreçleri,” Yüksek lisans tezi, İstatistik, Ankara Üniversitesi, Ankara, Türkiye, 2007.
  • C. Bectorand S. Chandra, “Fuzzy mathematical programming and fuzzy matrix games,” Studies in Fuzziness and Soft Computing, Verlag Berlin Heidelberg: Springer, 2005.
  • L. Stefaniniand M. L. Guerra, “On fuzzy arithmetic operations: Some properties and distributive approximations,” Int. J. Appl. Math, vol. 19, pp. 171–199, 2007.
  • S. Chandrasekaranand E.-. Tamilmani, “Arithmetic operation of fuzzy numbers usingα-cut method,” International Journal of Innovative Science, Engineering & Technology, vol. 2, no. 10, pp. 299-315, 2015.
  • A. M. Shapique, “Arithmetic operations on heptagonal fuzzy numbers,” Asian Research Journal of Mathematics, vol. 2, no. 5, pp. 1-25, 2017.
  • E. H. Eljaoui, S. Melliani, and L. S. Chadli, “Multiplication operations and powers of trapezoidal fuzzy numbers,” Journal of Universal Mathematics, vol. 1, no. 2, pp. 204-215, 2018.
  • P. Jayasriand P. Elavarasi, “Fuzzy set theoryand arithmetic operations on fuzzy numbers,” International Journal of Scientific Research and Management, vol. 6, no. 2, pp. 2321-3418, 2018.
  • I. M. Musa, “Investigation of basic concepts of fuzzy arithmetic,” Master of Science, Applied Mathematics and Computer Science, Eastern Mediterranean University, Gazimağusa, North Cyprus, 2015.
  • M. Y. Ali, A. Sultan, and A.F.M.K. Khan, “Comparison of fuzzy multiplication operation on triangular fuzzy numbers,” IOSR Journal of Mathematics, vol. 12, no. 4, pp. 35-41, 2016.
  • R. Chutia, S. Mahanta, and H.K. Baruah, “An alternative method of finding the membership of a fuzzy numbers,” International Journal of Latest Trends in Computing, vol. 1, no. 2, 2010

Fuzzy Set and Fuzzy Number: Arithmetic Operations with Applications

Year 2024, Volume: 13 Issue: 2, 223 - 247, 30.12.2024
https://doi.org/10.55007/dufed.1441147

Abstract

In classical logic, propositions have a two-valued decision structure, expressed solely as 'true' or 'false,' and it cannot examine situations of uncertainty. However, real-world problems often lack precision. Fuzzy logic, contrastingly, is a system that resembles the multifaceted thinking and decision-making mechanisms of humans in daily life and deals with uncertain situations and events. Fuzzy logic was first introduced mathematically in Zadeh’s work (1965). The widespread adoption of fuzzy logic stems from its capacity to represent the uncertainty present in real-world issues, making it a valuable tool across fields. Hence, it is crucial to grasp the concepts associated with fuzzy logic, rooted in fuzzy set theory, and execute fundamental arithmetic operation with precision when dealing with fuzzy numbers. With this in mind, this study first provides fundamental definitions and concepts related to fuzzy logic. Subsequently, arithmetic operations with both discrete and continuous fuzzy numbers are examined with examples to establish the logic of performing arithmetic operations with fuzzy numbers.

References

  • A. A. Vargeloğlu, “Sezgisel kümelere dayalı bulanık regresyon analizi ve uygulamaları,” Yüksek lisans tezi, İstatistik, Gazi Üniversitesi, Ankara, Türkiye, 2020.
  • L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, 1965
  • L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—I,” Information Sciences, vol. 8, no. 3, pp. 199-249, 1975.
  • G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and its Applications. New York, Jersey: Prentice Hall PTR, 1995.
  • N. Baykal and T. Beyan, Bulanık Mantık Uzman Sistemler ve Denetleyiciler.1sted, Ankara: Bıçaklar Kitabevi, 2004.
  • M. B. Başkır, “Bulanık kalite fonksiyon yayılımı yaklaşımının iyileştirilmesi ve uygulamaları,” Doktora tezi, İstatistik, Ankara Üniversitesi, Ankara, Türkiye,2011.
  • J. C. Bezdek, “Numerical taxonomy with fuzzy sets,” Journal of Mathematical Biology, vol. 1, pp. 57-71, 1974.
  • E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Human-Computer Studies, vol. 51, no. 2, pp. 135-147, 1999.
  • P. Hajek, L. Godo and F. Esteva, “Fuzzy logic and probability,” presented at Eleventh Conference on Uncertainty in Artificial Intelligence, Canada, from August 18th to August 20th, pp. 237-244, 1995.
  • J. Lukasiewicz, “Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls [Philosophical Remarks on Many-Valued Systems of Propositional Logic],”Comptes Rendus Des Séances De La Société Des Sciences Et Des Lettres De Varsovie Cl III, vol. 23, pp. 51–77, 1930.
  • D. Dubois and H. Prade, “Operations in a fuzzy-valued logic,” Information and Control, vol. 43, no. 2, pp. 224-240, 1979.
  • W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,”Z. Physik, vol. 43, pp. 172–198, 1927.
  • O. Castilloand P. Melin, “Type-1 fuzzy logic,”in Type-2 Fuzzy Logic: Theory and Applications, Berlin, Heidelberg:Springer,2008.
  • D. Duboisand H. Prade, “Fuzzy Sets and Systems: Theory and Applications,”United States of America: Academic Press INC,1980.
  • Y. Kocatürk, “Bulanık değişkenler ve bulanık yenileme süreçleri,” Yüksek lisans tezi, İstatistik, Ankara Üniversitesi, Ankara, Türkiye, 2007.
  • C. Bectorand S. Chandra, “Fuzzy mathematical programming and fuzzy matrix games,” Studies in Fuzziness and Soft Computing, Verlag Berlin Heidelberg: Springer, 2005.
  • L. Stefaniniand M. L. Guerra, “On fuzzy arithmetic operations: Some properties and distributive approximations,” Int. J. Appl. Math, vol. 19, pp. 171–199, 2007.
  • S. Chandrasekaranand E.-. Tamilmani, “Arithmetic operation of fuzzy numbers usingα-cut method,” International Journal of Innovative Science, Engineering & Technology, vol. 2, no. 10, pp. 299-315, 2015.
  • A. M. Shapique, “Arithmetic operations on heptagonal fuzzy numbers,” Asian Research Journal of Mathematics, vol. 2, no. 5, pp. 1-25, 2017.
  • E. H. Eljaoui, S. Melliani, and L. S. Chadli, “Multiplication operations and powers of trapezoidal fuzzy numbers,” Journal of Universal Mathematics, vol. 1, no. 2, pp. 204-215, 2018.
  • P. Jayasriand P. Elavarasi, “Fuzzy set theoryand arithmetic operations on fuzzy numbers,” International Journal of Scientific Research and Management, vol. 6, no. 2, pp. 2321-3418, 2018.
  • I. M. Musa, “Investigation of basic concepts of fuzzy arithmetic,” Master of Science, Applied Mathematics and Computer Science, Eastern Mediterranean University, Gazimağusa, North Cyprus, 2015.
  • M. Y. Ali, A. Sultan, and A.F.M.K. Khan, “Comparison of fuzzy multiplication operation on triangular fuzzy numbers,” IOSR Journal of Mathematics, vol. 12, no. 4, pp. 35-41, 2016.
  • R. Chutia, S. Mahanta, and H.K. Baruah, “An alternative method of finding the membership of a fuzzy numbers,” International Journal of Latest Trends in Computing, vol. 1, no. 2, 2010
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Fuzzy Computation, Statistical Theory, Mathematical Logic, Set Theory, Lattices and Universal Algebra
Journal Section Review Article
Authors

Ammar Homaıda 0000-0003-3675-2274

Mustafa Hilmi Pekalp 0000-0002-5183-8394

Meral Ebegil 0000-0003-4798-3422

Early Pub Date December 24, 2024
Publication Date December 30, 2024
Submission Date February 21, 2024
Acceptance Date September 28, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

IEEE A. Homaıda, M. H. Pekalp, and M. Ebegil, “Bulanık Küme ve Bulanık Sayı: Uygulamalarla Aritmetik İşlemler”, DUFED, vol. 13, no. 2, pp. 223–247, 2024, doi: 10.55007/dufed.1441147.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx