Research Article
BibTex RIS Cite

BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ

Year 2024, Volume: 14 Issue: 27, 98 - 125, 31.05.2024
https://doi.org/10.53092/duiibfd.1308549

Abstract

Uluslararası pazarlarda rekabet edebilmek için sadece ürünlerin niteliği yeterli olmamakta aynı zamanda lojistik süreçlerin de etkin yönetilmesi zorunluluğu bulunmaktadır. Bu açıdan doğru bir lojistik hizmet sağlayıcı seçimi de son derece önemli olmaktadır. Bu çalışmanın amacı proje lojistiği hizmeti alan ve uluslararası ticaret yapan bir firmanın bu süreç boyunca lojistik faaliyetlerini yerine getirecek olan üçüncü parti lojistik (3PL) hizmet sağlayıcının belirlenmesi olacaktır. Çalışma kapsamında hizmet sağlayıcı seçimi için çok kriterli karar verme (ÇKKV) yöntemlerinden ANP, MARCOS, WASPAS ve MAIRCA teknikleri bütünleşik olarak kullanılmış ve elde edilen sonuçlar BORDA Sayım yöntemi ile birleştirilmiştir. Literatür taraması neticesinde elde edilen kriterlerin ağırlıkları ANP ile elde edilmiş MARCOS, WASPAS ve MAIRCA yöntemleri ile bütünleştirilerek alternatiflerin sıralamaları bulunmuştur. Her bir yöntem sonucunda elde edilen bulgular BORDA Sayım yöntemi ile birleştirilmiş ve bu işlem sonucunda en iyi alternatif firma A2 firması olarak bulunmuştur. Bu firmayı sırası ile A1 ve A3 firmaları takip etmiştir. Ana kriterler ise önem sırasına göre yeterlilik, maliyet, kalite, ilişki faktörleri ve firmanın genel özellikleri olarak elde edilmiştir.

References

  • Acar, M. F., & Çapkın, A. (2017). Analitik ağ süreci ile tedarikçi seçimi: otomotiv sektörü örneği. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 4(2), 121-134. https://doi.org/10.30803/adusobed.337233
  • Adalı, E. A., & Işık, A. T. (2017). Bir tedarikçi seçim problemi için Swara ve Waspas yöntemlerine dayanan karar verme yaklaşımı. International Review of Economics and Management, 5(4), 56-77. https://doi.org/10.18825/iremjournal.335408
  • Akyüz, G., & Aka, S. (2017). Çok kriterli karar verme teknikleriyle tedarikçi performansı değerlendirmede toplamsal bir yaklaşım. Yönetim ve Ekonomi Araştırmaları Dergisi, 15(2), 28-46. https://doi.org/10.11611/yead.277893 Alinezhad, A., & Khalili, J. (2019). New methods and applications in multiple attribute decision making (MADM). Springer.
  • Badi, I., & Ballem, M. (2018). Supplier selection using the rough BWM-MAIRCA model: a case study in pharmaceutical supplying in Libya. Decision Making: Applications in Management and Enginnering, 1(2), 16-33. https://doi.org/10.31181/dmame1802016b
  • Badi, I., & Pamucar, D. (2020). Supplier selection for steelmaking company by using combined grey-MARCOS methods. Decision Making: Applications in Management and Engineering, 3(2), 37-47. https://doi.org/10.31181/dmame2003037b
  • Bakır, M., Akan, Ş., Kiracı, K., Karabasevic, D., Stanujkic, D., & Popovic, G. (2020). Multiple-Criteria approach of the operational performance evaluation in the airline industry: evidence from the emerging markets. Romanian Journal of Economic Forecasting, 23(2), 149-172. https://ipe.ro/rjef/rjef2_20/rjef2_2020p149-172.pdf
  • Chakraborty, S., Zavadskas, E. K., & Antucheviciene, J. (2015). Applications of waspas method as a multi-criteria decision-making tool. Academy of Economic Studies, 49(1), 5-22. https://doi.org/10.15388/Informatica.2014.01
  • Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: theory and methodology. North-Holland.
  • Cheng, Y., & Lee, F., (2010). Outsourcing reverse logistics of high-tech manufacturing firms by using a systematic decision-making approach: TFT-LCD sector in Taiwan. Industrial Marketing Management, 39(7), 1111-1119. https://doi.org/10.1016/j.indmarman.2009.10.004
  • Çakır, S., & Perçin, S. (2013). Çok kriterli karar verme teknikleriyle lojistik firmalarında performans ölçümü. Ege Akademik Bakış, 13(4), 449-459.
  • Ecer, F. (2020). Çok kriterli karar verme: geçmişten günümüze kapsamlı bir yaklaşım. Seçkin Yayınları.
  • Feng, J., Xu, S. X., Xu, G., & Cheng, H. (2022). An integrated decision-making method for locating parking centers of recyclable waste tranportation vehicles. Transportation Research Part E. (157), 1-21.
  • Gigovic, L., Pamucar, D., Bajic Z., & Milicevic, M. (2016). The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability, 8(4). 1-30. https://doi.org/10.3390/su8040372
  • Görçün, Ö. F., & Doğan, G. (2023). Mobile crane selection in project logistics operations using Best and Worst Method (BWM) and fuzzy Measurement of Alternatives and Ranking according to COmpromise Solution (MARCOS). Automation in Construction. 147, 1-22.
  • Görçün, Ö. F., Pamucar, D., & Biswas, S. (2023). The blockchain technology selection in the logistics industry using a novel MCDM framework based on fermatean fuzzy sets and dombi aggregation. Information Sciences, 635, 345-374.
  • Jharkharia, S., & Shankar, R. (2007). Selection of logistics service provider: An analytic network process (ANP) approach. Omega the International Journal of Management Science, 35(3), 274-289. https://doi.org/10.1016/j.omega.2005.06.005
  • Meade, L., & Sarkis, J. (2002). A conceptual model for selecting and evaluating third-party reverse logistics providers. Supply Chain Management, 7(5), 283-295. https://doi.org/10.1108/13598540210447728
  • Muravev, D., Hu, H., Zhou, H., & Pamucar, D. (2020). Location optimization of CR express international logistics centers. Symmetry, 12(1), 1-25. https://doi.org/10.3390/sym12010143
  • Nasri, S. A., Ehsani, B., Hosseininezhad, S. J., & Safaie, N. (2023). A sustainable supplier method using integrated Fuzzy DEMATEL-ANP-DEA approach (case study: petroleum industry). Environment, Development and Sustainability, 25(11), 12791-12827.
  • Niemiera, M. P., & Saaty, T. L. (2004). An analytic network process model for financial-crisis forecasting. International Journal of Forecasting, 20(4), 573-587. https://doi.org/10.1016/j.ijforecast.2003.09.013
  • Önder, M. (2015). Analitik Ağ Süreci. B. F. Yıldırım & E. Önder (Ed.), İşletmeciler, mühendisler ve yöneticiler için operasyonel, yönetsel ve stratejik problemlerin çözümünde Çok Kriterli Karar Verme Yöntemleri (ss. 75-113). Dora Yayınları.
  • Özbek, A. (2019). Çok kriterli karar kerme yöntemleri ve excel ile problem çözümü. Seçkin Yayıncılık. Pamucar, D., Chatterjee, K., & Zavadskas, E. K. (2018). Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers. Computers & Industiral Engineering, 127, 383-407. https://doi.org/10.1016/j.cie.2018.10.023
  • Pamucar, D. S., Tarle, S. P., & Parezanovic, T. (2018). New hybrid multi-criteria decision-making DEMATEL-MAIRCA model: Sustainable selection of a location for the development of multimodal logistics centre. Economic Research, 31(1), 1641-1665. https://doi.org/10.1080/1331677X.2018.1506706
  • Prajapati, H., Kant, R., & Shankar, R. (2023). Selection of strategy for reverse logistics implementation. Journal of Global Operations and Strategic Sourcing, 16(1), 1-23.
  • Puska, A., Stojanovic, I., Maksimovic, A., & Osmanovic, N. (2021). Project management software evaluation by using the measurement of alternatives and ranking according to compromise solution (MARCOS) method. Operational Research in Engineering Sciences: Theory and Applications, 3(1), 89-102. https://doi.org/10.31181/oresta2001089p
  • Puska, A., Stevic, Z., & Stojanovic, I. (2020). Selection of sustainable suppliers using the fuzzy MARCOS method. Current Chinese Science, 1(1), 1-12. https://doi.org/10.2174/2210298101999201109214028
  • Raut, R., Kharat, M., Kamble, S., & Kumar, C. S. (2018). Sustainable evaluation&selection of potential third party logistics providers (3PL): An integrated MCDM approach. Benchmarking: An İnternational Journal, 25(2), 1-32. https://doi.org/10.1108/BIJ-05-2016-0065
  • Ravi, V., Shankar, R., & Tiwari, M.K. (2005). Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach. Computers & Industrial Engineering, 48(2), 327-356. https://doi.org/10.1016/j.cie.2005.01.017
  • Reilly, B., (2002). Social choice in the south seas: electoral innovation and the borda count in the pacific island countries. International Political Science Review, 23(4), 355-372. https://doi.org/10.1177/0192512102023004002
  • Saaty, T. L., (2009). Applications of analytic network process in entertainment. Iranian Journal of Operations Research, 1(2), 41-55. https://iors.ir/journal/article-1-63-en.html&sw=
  • Santonja, G.G., Beltran, P.A., & Ferragut, J.N. (2012). The application of the analytic network process to the assessment of best available techniques. Journal of Cleaner Production, (25), 86-95. https://doi.org/10.1016/j.jclepro.2011.12.012
  • Sentürk, S., Binici, Y., & Erginel, N. (2016). The theoretical structure of fuzzy analytic network process (FANP) with interval Type-2 fuzzy Sets. IFAC Papersonline, 49(12), 1318-1322. https://doi.org/10.1016/j.ifacol.2016.07.706
  • Sremac, S., Stevic, Z., Pamucar, D., Arsic, M., & Matic, B. (2018). Evaluation of a third-party logistics (3PL) provider using a rough SWARA-WASPAS model based on a new rough dombi aggregator. Symmetry, 10(8), 1-25. https://doi.org/10.3390/sym10080305
  • Stevic, Z., Pamucar, D., Puska, A., & Chatterjee, P. (2019). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement alternatives and ranking according to compromise solution (MARCOS). Computers & Industrial Engineering, (140), 1-33. https://doi.org/10.1016/j.cie.2019.106231
  • Sun, J., Kalil, A.C., Mattei, J., Florescu, D.F., & Kalil, R.S. (2010). Recommendations for the assessment and reporting of multivariable logistic regression in transplantation literature. American Journal of Transplantation, (10), 1695-1703. https://doi.org/10.1111/j.1600-6143.2010.03141.x.
  • Şahin, Ö. N., & Bakırtaş, İ. (2000). İki dünya savaşı arasındaki dönemde dünya ekonomik ve siyasi dengelerindeki değişmeler. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (4), 61-77.
  • Tavana, M., Zareinejad, M., Santos-Arteaga, F.J., & Kaviani, M.A. (2016). A Conceptual analytic network model for evaluating and selecting third-party reverse logistics providers. International Journal of Advanced Manufacturing Technology, 86(5), 1705-1721. https://doi.org/10.1007/s00170-015-8208-6
  • Turbaningsih, O., Buana, I. S., Nur, H. I., & Pertiwi, A. (2022). The multimodal transport analysis for project logistics: export of Indonesia’s train manufacturer. Cogent Social Sciences, 8(1), 1-15.
  • Zarbakhshnia, N., Govindan, K., Kannan, D., & Goh, M. (2022). Outsourcing logistics operations in circular economy towards to sustainable development goals. Business Strategy and the Environment, 32(1), 134-162.
  • Zavadskas, E.K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika, 122(6), 3-6. https://doi.org/10.5755/j01.eee.122.6.1810
  • Zopounidis, C., (1999). Multicriteria decision aid in financial management. European Journal of Operational Research, 119(2), 404-415. https://doi.org/10.1016/S0377-2217(99)00142-3

THIRD PARTY LOGISTICS SERVICE PROVIDER SELECTION IN PROJECT LOGISTICS OPERATIONS USING INTEGRATED ANP, MARCOS, WASPAS AND MAIRCA METHODS

Year 2024, Volume: 14 Issue: 27, 98 - 125, 31.05.2024
https://doi.org/10.53092/duiibfd.1308549

Abstract

In order to compete in international markets, not only the quality of the products is sufficient, but also the effective management of logistics processes is required. In this respect, choosing the right logistics service provider is extremely important. The purpose of this study will be to determine the third party logistics (3PL) service provider that will carry out the logistics activities of a company that receives project logistics service and does international trade during this process. Within the scope of the study, ANP, MARCOS, WASPAS and MAIRCA techniques, which are among the multi-criteria decision making (MCDM) methods, were used in an integrated manner for service provider selection and the results were combined with the BORDA counting method. The weights of the criteria obtained as a result of the literature review were integrated with the MARCOS, WASPAS and MAIRCA methods obtained with ANP, and the rankings of the alternatives were found. The findings obtained as a result of each method were combined with the BORDA counting method and as a result of this process, the best alternative company was found to be A2 company. This company was followed by A1 and A3 companies, respectively. The main criteria were obtained as competence, cost, quality, relationship factors and general characteristics of the company, in order of importance.

References

  • Acar, M. F., & Çapkın, A. (2017). Analitik ağ süreci ile tedarikçi seçimi: otomotiv sektörü örneği. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 4(2), 121-134. https://doi.org/10.30803/adusobed.337233
  • Adalı, E. A., & Işık, A. T. (2017). Bir tedarikçi seçim problemi için Swara ve Waspas yöntemlerine dayanan karar verme yaklaşımı. International Review of Economics and Management, 5(4), 56-77. https://doi.org/10.18825/iremjournal.335408
  • Akyüz, G., & Aka, S. (2017). Çok kriterli karar verme teknikleriyle tedarikçi performansı değerlendirmede toplamsal bir yaklaşım. Yönetim ve Ekonomi Araştırmaları Dergisi, 15(2), 28-46. https://doi.org/10.11611/yead.277893 Alinezhad, A., & Khalili, J. (2019). New methods and applications in multiple attribute decision making (MADM). Springer.
  • Badi, I., & Ballem, M. (2018). Supplier selection using the rough BWM-MAIRCA model: a case study in pharmaceutical supplying in Libya. Decision Making: Applications in Management and Enginnering, 1(2), 16-33. https://doi.org/10.31181/dmame1802016b
  • Badi, I., & Pamucar, D. (2020). Supplier selection for steelmaking company by using combined grey-MARCOS methods. Decision Making: Applications in Management and Engineering, 3(2), 37-47. https://doi.org/10.31181/dmame2003037b
  • Bakır, M., Akan, Ş., Kiracı, K., Karabasevic, D., Stanujkic, D., & Popovic, G. (2020). Multiple-Criteria approach of the operational performance evaluation in the airline industry: evidence from the emerging markets. Romanian Journal of Economic Forecasting, 23(2), 149-172. https://ipe.ro/rjef/rjef2_20/rjef2_2020p149-172.pdf
  • Chakraborty, S., Zavadskas, E. K., & Antucheviciene, J. (2015). Applications of waspas method as a multi-criteria decision-making tool. Academy of Economic Studies, 49(1), 5-22. https://doi.org/10.15388/Informatica.2014.01
  • Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: theory and methodology. North-Holland.
  • Cheng, Y., & Lee, F., (2010). Outsourcing reverse logistics of high-tech manufacturing firms by using a systematic decision-making approach: TFT-LCD sector in Taiwan. Industrial Marketing Management, 39(7), 1111-1119. https://doi.org/10.1016/j.indmarman.2009.10.004
  • Çakır, S., & Perçin, S. (2013). Çok kriterli karar verme teknikleriyle lojistik firmalarında performans ölçümü. Ege Akademik Bakış, 13(4), 449-459.
  • Ecer, F. (2020). Çok kriterli karar verme: geçmişten günümüze kapsamlı bir yaklaşım. Seçkin Yayınları.
  • Feng, J., Xu, S. X., Xu, G., & Cheng, H. (2022). An integrated decision-making method for locating parking centers of recyclable waste tranportation vehicles. Transportation Research Part E. (157), 1-21.
  • Gigovic, L., Pamucar, D., Bajic Z., & Milicevic, M. (2016). The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability, 8(4). 1-30. https://doi.org/10.3390/su8040372
  • Görçün, Ö. F., & Doğan, G. (2023). Mobile crane selection in project logistics operations using Best and Worst Method (BWM) and fuzzy Measurement of Alternatives and Ranking according to COmpromise Solution (MARCOS). Automation in Construction. 147, 1-22.
  • Görçün, Ö. F., Pamucar, D., & Biswas, S. (2023). The blockchain technology selection in the logistics industry using a novel MCDM framework based on fermatean fuzzy sets and dombi aggregation. Information Sciences, 635, 345-374.
  • Jharkharia, S., & Shankar, R. (2007). Selection of logistics service provider: An analytic network process (ANP) approach. Omega the International Journal of Management Science, 35(3), 274-289. https://doi.org/10.1016/j.omega.2005.06.005
  • Meade, L., & Sarkis, J. (2002). A conceptual model for selecting and evaluating third-party reverse logistics providers. Supply Chain Management, 7(5), 283-295. https://doi.org/10.1108/13598540210447728
  • Muravev, D., Hu, H., Zhou, H., & Pamucar, D. (2020). Location optimization of CR express international logistics centers. Symmetry, 12(1), 1-25. https://doi.org/10.3390/sym12010143
  • Nasri, S. A., Ehsani, B., Hosseininezhad, S. J., & Safaie, N. (2023). A sustainable supplier method using integrated Fuzzy DEMATEL-ANP-DEA approach (case study: petroleum industry). Environment, Development and Sustainability, 25(11), 12791-12827.
  • Niemiera, M. P., & Saaty, T. L. (2004). An analytic network process model for financial-crisis forecasting. International Journal of Forecasting, 20(4), 573-587. https://doi.org/10.1016/j.ijforecast.2003.09.013
  • Önder, M. (2015). Analitik Ağ Süreci. B. F. Yıldırım & E. Önder (Ed.), İşletmeciler, mühendisler ve yöneticiler için operasyonel, yönetsel ve stratejik problemlerin çözümünde Çok Kriterli Karar Verme Yöntemleri (ss. 75-113). Dora Yayınları.
  • Özbek, A. (2019). Çok kriterli karar kerme yöntemleri ve excel ile problem çözümü. Seçkin Yayıncılık. Pamucar, D., Chatterjee, K., & Zavadskas, E. K. (2018). Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers. Computers & Industiral Engineering, 127, 383-407. https://doi.org/10.1016/j.cie.2018.10.023
  • Pamucar, D. S., Tarle, S. P., & Parezanovic, T. (2018). New hybrid multi-criteria decision-making DEMATEL-MAIRCA model: Sustainable selection of a location for the development of multimodal logistics centre. Economic Research, 31(1), 1641-1665. https://doi.org/10.1080/1331677X.2018.1506706
  • Prajapati, H., Kant, R., & Shankar, R. (2023). Selection of strategy for reverse logistics implementation. Journal of Global Operations and Strategic Sourcing, 16(1), 1-23.
  • Puska, A., Stojanovic, I., Maksimovic, A., & Osmanovic, N. (2021). Project management software evaluation by using the measurement of alternatives and ranking according to compromise solution (MARCOS) method. Operational Research in Engineering Sciences: Theory and Applications, 3(1), 89-102. https://doi.org/10.31181/oresta2001089p
  • Puska, A., Stevic, Z., & Stojanovic, I. (2020). Selection of sustainable suppliers using the fuzzy MARCOS method. Current Chinese Science, 1(1), 1-12. https://doi.org/10.2174/2210298101999201109214028
  • Raut, R., Kharat, M., Kamble, S., & Kumar, C. S. (2018). Sustainable evaluation&selection of potential third party logistics providers (3PL): An integrated MCDM approach. Benchmarking: An İnternational Journal, 25(2), 1-32. https://doi.org/10.1108/BIJ-05-2016-0065
  • Ravi, V., Shankar, R., & Tiwari, M.K. (2005). Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach. Computers & Industrial Engineering, 48(2), 327-356. https://doi.org/10.1016/j.cie.2005.01.017
  • Reilly, B., (2002). Social choice in the south seas: electoral innovation and the borda count in the pacific island countries. International Political Science Review, 23(4), 355-372. https://doi.org/10.1177/0192512102023004002
  • Saaty, T. L., (2009). Applications of analytic network process in entertainment. Iranian Journal of Operations Research, 1(2), 41-55. https://iors.ir/journal/article-1-63-en.html&sw=
  • Santonja, G.G., Beltran, P.A., & Ferragut, J.N. (2012). The application of the analytic network process to the assessment of best available techniques. Journal of Cleaner Production, (25), 86-95. https://doi.org/10.1016/j.jclepro.2011.12.012
  • Sentürk, S., Binici, Y., & Erginel, N. (2016). The theoretical structure of fuzzy analytic network process (FANP) with interval Type-2 fuzzy Sets. IFAC Papersonline, 49(12), 1318-1322. https://doi.org/10.1016/j.ifacol.2016.07.706
  • Sremac, S., Stevic, Z., Pamucar, D., Arsic, M., & Matic, B. (2018). Evaluation of a third-party logistics (3PL) provider using a rough SWARA-WASPAS model based on a new rough dombi aggregator. Symmetry, 10(8), 1-25. https://doi.org/10.3390/sym10080305
  • Stevic, Z., Pamucar, D., Puska, A., & Chatterjee, P. (2019). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement alternatives and ranking according to compromise solution (MARCOS). Computers & Industrial Engineering, (140), 1-33. https://doi.org/10.1016/j.cie.2019.106231
  • Sun, J., Kalil, A.C., Mattei, J., Florescu, D.F., & Kalil, R.S. (2010). Recommendations for the assessment and reporting of multivariable logistic regression in transplantation literature. American Journal of Transplantation, (10), 1695-1703. https://doi.org/10.1111/j.1600-6143.2010.03141.x.
  • Şahin, Ö. N., & Bakırtaş, İ. (2000). İki dünya savaşı arasındaki dönemde dünya ekonomik ve siyasi dengelerindeki değişmeler. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, (4), 61-77.
  • Tavana, M., Zareinejad, M., Santos-Arteaga, F.J., & Kaviani, M.A. (2016). A Conceptual analytic network model for evaluating and selecting third-party reverse logistics providers. International Journal of Advanced Manufacturing Technology, 86(5), 1705-1721. https://doi.org/10.1007/s00170-015-8208-6
  • Turbaningsih, O., Buana, I. S., Nur, H. I., & Pertiwi, A. (2022). The multimodal transport analysis for project logistics: export of Indonesia’s train manufacturer. Cogent Social Sciences, 8(1), 1-15.
  • Zarbakhshnia, N., Govindan, K., Kannan, D., & Goh, M. (2022). Outsourcing logistics operations in circular economy towards to sustainable development goals. Business Strategy and the Environment, 32(1), 134-162.
  • Zavadskas, E.K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika, 122(6), 3-6. https://doi.org/10.5755/j01.eee.122.6.1810
  • Zopounidis, C., (1999). Multicriteria decision aid in financial management. European Journal of Operational Research, 119(2), 404-415. https://doi.org/10.1016/S0377-2217(99)00142-3
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Economics
Journal Section Research Article
Authors

Nizamettin Öztürkçü 0000-0001-8369-3735

Selami Özcan 0000-0002-0882-427X

Early Pub Date May 1, 2024
Publication Date May 31, 2024
Submission Date June 1, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2024 Volume: 14 Issue: 27

Cite

APA Öztürkçü, N., & Özcan, S. (2024). BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ. Dicle Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 14(27), 98-125. https://doi.org/10.53092/duiibfd.1308549
AMA Öztürkçü N, Özcan S. BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. May 2024;14(27):98-125. doi:10.53092/duiibfd.1308549
Chicago Öztürkçü, Nizamettin, and Selami Özcan. “BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ”. Dicle Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi 14, no. 27 (May 2024): 98-125. https://doi.org/10.53092/duiibfd.1308549.
EndNote Öztürkçü N, Özcan S (May 1, 2024) BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 14 27 98–125.
IEEE N. Öztürkçü and S. Özcan, “BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ”, Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, vol. 14, no. 27, pp. 98–125, 2024, doi: 10.53092/duiibfd.1308549.
ISNAD Öztürkçü, Nizamettin - Özcan, Selami. “BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ”. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 14/27 (May 2024), 98-125. https://doi.org/10.53092/duiibfd.1308549.
JAMA Öztürkçü N, Özcan S. BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2024;14:98–125.
MLA Öztürkçü, Nizamettin and Selami Özcan. “BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ”. Dicle Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, vol. 14, no. 27, 2024, pp. 98-125, doi:10.53092/duiibfd.1308549.
Vancouver Öztürkçü N, Özcan S. BÜTÜNLEŞİK ANP, MARCOS, WASPAS VE MAIRCA YÖNTEMLERİ KULLANILARAK PROJE LOJİSTİĞİ OPERASYONLARINDA ÜÇÜNCÜ PARTİ LOJİSTİK HİZMET SAĞLAYICI SEÇİMİ. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi. 2024;14(27):98-125.

                                                                                                                                                           32482   32483

All works published in this journal are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.