Research Article
BibTex RIS Cite

Eksenel akılı tam adım sargılı anahtarlamalı relüktans makinasının stator/rotor kutup şekillerinin motor performansına etkisi

Year 2022, , 181 - 189, 28.06.2022
https://doi.org/10.24012/dumf.1076302

Abstract

Anahtarlamalı Relüktans Makinaları (ARM) çeşitli teknolojik alanlarda özelliklede elektrikli araç teknolojisinde tercih edilen elektrik motorlardan biridir. Düşük maliyeti, güvenilirliği, sağlamlığı ve yüksek hata tolerans yeteneği gibi özellikleri, tercih edilmelerinin en önemli sebeplerindendir. Ayrıca, son yıllarda elektrik makinalarının radyal tasarımı yerine eksenel tasarımı ile ilgili araştırmalar da giderek artmaktadır. Literatürde, eksenel akılı ARM’ler üzerine geometrik tasarım ve kontrolü hakkında çeşitli çalışmalar bulunmaktadır. Bu çalışmalar incelendiğinde genel olarak kısa adım sargılı olarak da bilinen geleneksel ARM’ler tercih edilmiştir. Bu çalışmada tam adım sargılı eksenel akılı ARM’nin stator/rotor kutup şekillerinin motor performansına etkisi incelenmiştir. Tam adım sargılı ARM’ler sargı yapısından dolayı fazlar arasında oluşan karşıt kuplaj etkisiyle, geleneksel ARM’lere göre daha yüksek moment üretmektedirler. Çalışma kapsamında, Model-1(kavisli), Model-2 (keskin) ve de Model-3 (yuvarlak) olmak üzere üç farklı stator/rotor kutup yapısına sahip tam adım sargılı eksenel akılı ARM modeli önerilmiş, tüm modellerin 3B (üç boyut) magnetostatik analizleri gerçekleştirilmiştir. Elde edilen analiz sonuçları karşılaştırılarak, tasarlanan modeller için en uygun kutup yapısının keskin köşeli Model-2 yapısı olduğu görülmüştür.

References

  • H. Cheng, H. Chen, and Z. Yang, "Design indicators and structure optimisation of switched reluctance machine for electric vehicles," IET Electr. Power Appl., vol. 9, no. 4, pp. 319-331, Apr. 2015.
  • E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, "Opportunities and Challenges of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study," IEEE Trans. Transp. Electrification, vol. 3, no. 1, pp. 58-75, Mar. 2017.
  • M. Ma, Z. Chang, Y. Hu, F. Li, C. Gan, and W. Cao, "An Integrated Switched Reluctance Motor Drive Topology With Voltage Boosting and On-Board Charging Capabilities for Plug-In Hybrid Electric Vehicles (PHEVs)," IEEE Access, vol. 6, pp. 1550 1559, Dec. 2018.
  • N. Kurihara, J. Bayless, H. Sugimoto, and A. Chiba, "Noise Reduction of Switched Reluctance Motor With High Number of Poles by Novel Simplified Current Waveform at Low Speed and Low Torque Region," IEEE Trans. Ind. Appl., vol. 52, no.4, pp. 3013-3021, Apr. 2016.
  • J. W. Jiang, B. Bilgin, and A. Emadi, "Three-Phase 24/16 Switched Reluctance Machine for a Hybrid Electric Powertrain," IEEE Trans. Transp. Electrification, vol. 3, no.1, pp. 76-85, Feb. 2017.
  • H. Wang and F. Li, "Design Consideration and Characteristic Investigation of Modular Permanent Magnet Bearingless Switched Reluctance Motor," IEEE Trans. Ind. Electron, vol. 67, no.6, pp. 4326-4337, July 2020.
  • A. Fenercioğlu, M. Ş. Kurt, A. Şahin, H. Z. Keleş, and T. Kocaer, "Effect of rotor geometry on performance of 6/4 switched reluctance motors," DUJE, vol. 12, no. 3, pp. 459-469, June 2021.
  • J. Ye, B. Bilgin, and A. Emadi, "An Extended-Speed Low-Ripple Torque Control of Switched Reluctance Motor Drives," IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, Apr. 2015.
  • K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, "Cylindrical Rotor Design for Acoustic Noise and Windage Loss Reduction in Switched Reluctance Motor for HEV Applications," IEEE Trans. Ind. Appl, vol. 52, no. 1, pp. 154-162, Aug. 2016.
  • M. Tursini, M. Villani, G. Fabri, and L. Di Leonardo, "A switched-reluctance motor for aerospace application: Design, analysis and results," Electr. Power Syst. Res., vol. 142, pp. 74-83, Jan. 2017.
  • A. Shahabi, A. Rashidi, M. Afshoon, and S. M. Saghaian Nejad, "Commutation angles adjustment in SRM drives to reduce torque ripple below the motor base speed," Turk J Elec Eng & Comp Sci, vol. 24, no. 2, pp. 669-682, Jan. 2016.
  • W. Sun, Q. Li, K. Liu, and L. Li, "Design and analysis of a novel rotor-segmented axial-field switched reluctance machine," CES Transactions on Electrical Machines and Systems, vol. 1, no. 3, pp. 238-245, Sep. 2017.
  • N. Ali, Q. Gao, C. Xu, P. Makyš, and M. Štulrajter, "Fault diagnosis and tolerant control for power converter in SRM drives," J. Eng., vol. 2018, pp. 546-551, Feb. 2018.
  • D. Marcsa and M. Kuczmann, "Design and control for torque ripple reduction of a 3-phase switched reluctance motor," Comput. Math. Appl., vol. 74, no. 1, pp. 89-95, July 2017.
  • H.-S. Ro, K.-G. Lee, J.-S. Lee, H.-G. Jeong, and K.-B. Lee, "Torque Ripple Minimization Scheme Using Torque Sharing Function Based Fuzzy Logic Control for a Switched Reluctance Motor," J Electr Eng Technol, vol. 10, no. 1, pp. 118-127, Jan. 2015.
  • X. Y. Ma, G. J. Li, G. W. Jewell, Z. Q. Zhu, and H. L. Zhan, "Performance Comparison of Doubly Salient Reluctance Machine Topologies Supplied by Sinewave Currents," IEEE Trans. Ind. Electron., vol. 63, no.7, pp. 4086-4096, July 2016.
  • X. Deng, B. Mecrow, H. Wu, and R. Martin, "Design and Development of Low Torque Ripple Variable-Speed Drive System With Six-Phase Switched Reluctance Motors," IEEE Trans. Energy Convers., vol. 33, no.1, pp. 420-429, Mar. 2018.
  • Q. Sun, J. Wu, C. Gan, Y. Hu, and J. Si, "OCTSF for torque ripple minimisation in SRMs," IET Power Electron., vol. 9, no. 14, pp. 2741-2750, Now. 2016.
  • H. Ishikawa, T. Imai, and H. Naitoh, "New Drive Circuit for Reducing the Switching Current Ripples in Switched Reluctance Motors," Electr Eng. Jpn., vol. 203, no. 2, pp. 47-57, Jan. 2018.
  • E. Daryabeigi, M. M. Namazi, A. Emanian, A. Rashidi, and S. M. Saghaian-Nejad, "Torque ripple reduction of switched reluctance motor (SRM) drives, with emotional controller (BELBIC)," presented at the Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5-9 Feb. 2012.
  • C. Sahin, A. E. Amac, M. Karacor, and A. Emadi, "Reducing torque ripple of switched reluctance machines by relocation of rotor moulding clinches," IET Electr. Power Appl., vol. 6, no. 9, p. 753-760, Nov. 2012.
  • W. Ding, Y. Hu, and L. Wu, "Analysis and Development of Novel Three-Phase Hybrid Magnetic Paths Switched Reluctance Motors Using Modular and Segmental Structures for EV Applications," IEEE/ASME Trans. Mech., vol. 20, pp. 2437-2451, Jan. 2015.
  • B. C. Mecrow, "Fully pitched-winding switched-reluctance and stepping-motor arrangements," IEE Proceedings B, vol. 140, no. 1, pp. 61-70, Jan. 1993.
  • M. A. Kabir and I. Husain, "Design of Mutually Coupled Switched Reluctance Motors (MCSRMs) for Extended Speed Applications Using 3-Phase Standard Inverters," IEEE Trans. Energy Convers., vol. 31, no.2, pp. 436-445, Dec. 2016.
  • J. Sun, S. Wang, Z. Kuang, and H. Wu, "Torque ripple comparison of short-pitched and fully-pitched winding switched reluctance machine," presented at the 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 21-24 Oct. 2012.
  • P. Azer, B. Bilgin, and A. Emadi, "Mutually Coupled Switched Reluctance Motor: Fundamentals, Control, Modeling, State of the Art Review and Future Trends," IEEE Access, vol. 7, pp. 100099-100112, July 2019.
  • E. S. Sanches and J. A. Santisteban, "Mutual Inductances Effect on the Torque of an Axial Magnetic Flux Switched Reluctance Motor," IEEE Lat. Am. Trans, vol. 13, no. 7, pp. 2239-2244, July 2015.
  • H. Torkaman, A. Ghaheri, and A. Keyhani, "Axial flux switched reluctance machines: a comprehensive review of design and topologies," IET Electr. Power Appl., vol. 13, no. 3, pp. 310-321, Jan 2019.
  • H. Arihara and K. Akatsu, "Basic Properties of an Axial-Type Switched Reluctance Motor," IEEE Trans. Ind. Appl., vol. 49, no.1, pp. 59-65, Jan.-Feb. 2013.
  • J. Ma, J. Li, H. Fang, Z. Li, Z. Liang, Z. Fu, et al., "Optimal Design of an Axial-Flux Switched Reluctance Motor With Grain-Oriented Electrical Steel," IEEE Trans. Ind. Appl., vol. 53, no.6, pp. 5327-5337, Nov.-Dec. 2017.
  • M. H. Belhadi, G. Krebs, C. Marchand, H. Hannoun, and X. Mininger, "Evaluation of axial SRM for electric vehicle application," Electr. Power Syst. Res., vol. 148, pp. 155-161, July 2017.
  • R. Shiwakoti, B. Poudel, E. Amiri, M. Divandari, and A. Damaki, "Design and Analysis of Modular Axial Flux Switched Reluctance Motor," presented at the IEEE International Electric Machines & Drives Conference (IEMDC), 12-15 May 2019.
  • M. J. Kermanipour and B. Ganji, "Modification in Geometric Structure of Double-Sided Axial Flux Switched Reluctance Motor for Mitigating Torque Ripple," Can. J. Elect. Comput. E., vol. 38, no. 4, pp. 318-322, Fall 2015.
  • C. Sahin and M. Karacor, "Principle, design and analysis of a novel axial flux switched reluctance machine with fully pitched winding structure," Electrical Engineering, to be published DOI: https://doi.org/10.1007/s00202-021-01417-z.
  • R. Alipour-Sarabi, Z. Nasiri-Gheidari, and H. Oraee, "Development of a Three-Dimensional Magnetic Equivalent Circuit Model for Axial Flux Machines," IEEE Trans. Ind. Electron., vol. 67, no.7, pp. 5758-5767, July 2020.
  • M. Çeçen and B. GÜMÜŞ, "Sonlu elemanlar yöntemi kullanarak farklı tip sargılar için güç transformatörün 2B analiz sonuçlarının karşılaştırılması," DUJE, vol. 9, no. 2, pp. 701-712, Sep. 2018.
  • K. Kiyota, S. Nakano, and A. Chiba, "A Fast Calculation Method of Optimal Ratio of Outer Diameter and Axial Length for Torque Improvement in Switched Reluctance Motor," IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 5802-5811, June 2018.
  • W. Sun, Q. Li, L. Sun, L. Zhu, and L. Li, "Electromagnetic Analysis on Novel Rotor-Segmented Axial-Field SRM Based on Dynamic Magnetic Equivalent Circuit," IEEE Trans. Magn., vol. 55, no. 6, pp. 1-5, Mar. 2019.
  • K. Deguchi, S. Sumita, and Y. Enomoto, "Analytical Method Applying a Mathematical Model for Axial-Gap-Switched Reluctance Motor," Electr Eng. Jpn., vol. 196, no. 3, pp. 30-38, Nov. 2016.
Year 2022, , 181 - 189, 28.06.2022
https://doi.org/10.24012/dumf.1076302

Abstract

References

  • H. Cheng, H. Chen, and Z. Yang, "Design indicators and structure optimisation of switched reluctance machine for electric vehicles," IET Electr. Power Appl., vol. 9, no. 4, pp. 319-331, Apr. 2015.
  • E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, "Opportunities and Challenges of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study," IEEE Trans. Transp. Electrification, vol. 3, no. 1, pp. 58-75, Mar. 2017.
  • M. Ma, Z. Chang, Y. Hu, F. Li, C. Gan, and W. Cao, "An Integrated Switched Reluctance Motor Drive Topology With Voltage Boosting and On-Board Charging Capabilities for Plug-In Hybrid Electric Vehicles (PHEVs)," IEEE Access, vol. 6, pp. 1550 1559, Dec. 2018.
  • N. Kurihara, J. Bayless, H. Sugimoto, and A. Chiba, "Noise Reduction of Switched Reluctance Motor With High Number of Poles by Novel Simplified Current Waveform at Low Speed and Low Torque Region," IEEE Trans. Ind. Appl., vol. 52, no.4, pp. 3013-3021, Apr. 2016.
  • J. W. Jiang, B. Bilgin, and A. Emadi, "Three-Phase 24/16 Switched Reluctance Machine for a Hybrid Electric Powertrain," IEEE Trans. Transp. Electrification, vol. 3, no.1, pp. 76-85, Feb. 2017.
  • H. Wang and F. Li, "Design Consideration and Characteristic Investigation of Modular Permanent Magnet Bearingless Switched Reluctance Motor," IEEE Trans. Ind. Electron, vol. 67, no.6, pp. 4326-4337, July 2020.
  • A. Fenercioğlu, M. Ş. Kurt, A. Şahin, H. Z. Keleş, and T. Kocaer, "Effect of rotor geometry on performance of 6/4 switched reluctance motors," DUJE, vol. 12, no. 3, pp. 459-469, June 2021.
  • J. Ye, B. Bilgin, and A. Emadi, "An Extended-Speed Low-Ripple Torque Control of Switched Reluctance Motor Drives," IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, Apr. 2015.
  • K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, "Cylindrical Rotor Design for Acoustic Noise and Windage Loss Reduction in Switched Reluctance Motor for HEV Applications," IEEE Trans. Ind. Appl, vol. 52, no. 1, pp. 154-162, Aug. 2016.
  • M. Tursini, M. Villani, G. Fabri, and L. Di Leonardo, "A switched-reluctance motor for aerospace application: Design, analysis and results," Electr. Power Syst. Res., vol. 142, pp. 74-83, Jan. 2017.
  • A. Shahabi, A. Rashidi, M. Afshoon, and S. M. Saghaian Nejad, "Commutation angles adjustment in SRM drives to reduce torque ripple below the motor base speed," Turk J Elec Eng & Comp Sci, vol. 24, no. 2, pp. 669-682, Jan. 2016.
  • W. Sun, Q. Li, K. Liu, and L. Li, "Design and analysis of a novel rotor-segmented axial-field switched reluctance machine," CES Transactions on Electrical Machines and Systems, vol. 1, no. 3, pp. 238-245, Sep. 2017.
  • N. Ali, Q. Gao, C. Xu, P. Makyš, and M. Štulrajter, "Fault diagnosis and tolerant control for power converter in SRM drives," J. Eng., vol. 2018, pp. 546-551, Feb. 2018.
  • D. Marcsa and M. Kuczmann, "Design and control for torque ripple reduction of a 3-phase switched reluctance motor," Comput. Math. Appl., vol. 74, no. 1, pp. 89-95, July 2017.
  • H.-S. Ro, K.-G. Lee, J.-S. Lee, H.-G. Jeong, and K.-B. Lee, "Torque Ripple Minimization Scheme Using Torque Sharing Function Based Fuzzy Logic Control for a Switched Reluctance Motor," J Electr Eng Technol, vol. 10, no. 1, pp. 118-127, Jan. 2015.
  • X. Y. Ma, G. J. Li, G. W. Jewell, Z. Q. Zhu, and H. L. Zhan, "Performance Comparison of Doubly Salient Reluctance Machine Topologies Supplied by Sinewave Currents," IEEE Trans. Ind. Electron., vol. 63, no.7, pp. 4086-4096, July 2016.
  • X. Deng, B. Mecrow, H. Wu, and R. Martin, "Design and Development of Low Torque Ripple Variable-Speed Drive System With Six-Phase Switched Reluctance Motors," IEEE Trans. Energy Convers., vol. 33, no.1, pp. 420-429, Mar. 2018.
  • Q. Sun, J. Wu, C. Gan, Y. Hu, and J. Si, "OCTSF for torque ripple minimisation in SRMs," IET Power Electron., vol. 9, no. 14, pp. 2741-2750, Now. 2016.
  • H. Ishikawa, T. Imai, and H. Naitoh, "New Drive Circuit for Reducing the Switching Current Ripples in Switched Reluctance Motors," Electr Eng. Jpn., vol. 203, no. 2, pp. 47-57, Jan. 2018.
  • E. Daryabeigi, M. M. Namazi, A. Emanian, A. Rashidi, and S. M. Saghaian-Nejad, "Torque ripple reduction of switched reluctance motor (SRM) drives, with emotional controller (BELBIC)," presented at the Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 5-9 Feb. 2012.
  • C. Sahin, A. E. Amac, M. Karacor, and A. Emadi, "Reducing torque ripple of switched reluctance machines by relocation of rotor moulding clinches," IET Electr. Power Appl., vol. 6, no. 9, p. 753-760, Nov. 2012.
  • W. Ding, Y. Hu, and L. Wu, "Analysis and Development of Novel Three-Phase Hybrid Magnetic Paths Switched Reluctance Motors Using Modular and Segmental Structures for EV Applications," IEEE/ASME Trans. Mech., vol. 20, pp. 2437-2451, Jan. 2015.
  • B. C. Mecrow, "Fully pitched-winding switched-reluctance and stepping-motor arrangements," IEE Proceedings B, vol. 140, no. 1, pp. 61-70, Jan. 1993.
  • M. A. Kabir and I. Husain, "Design of Mutually Coupled Switched Reluctance Motors (MCSRMs) for Extended Speed Applications Using 3-Phase Standard Inverters," IEEE Trans. Energy Convers., vol. 31, no.2, pp. 436-445, Dec. 2016.
  • J. Sun, S. Wang, Z. Kuang, and H. Wu, "Torque ripple comparison of short-pitched and fully-pitched winding switched reluctance machine," presented at the 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo, Japan, 21-24 Oct. 2012.
  • P. Azer, B. Bilgin, and A. Emadi, "Mutually Coupled Switched Reluctance Motor: Fundamentals, Control, Modeling, State of the Art Review and Future Trends," IEEE Access, vol. 7, pp. 100099-100112, July 2019.
  • E. S. Sanches and J. A. Santisteban, "Mutual Inductances Effect on the Torque of an Axial Magnetic Flux Switched Reluctance Motor," IEEE Lat. Am. Trans, vol. 13, no. 7, pp. 2239-2244, July 2015.
  • H. Torkaman, A. Ghaheri, and A. Keyhani, "Axial flux switched reluctance machines: a comprehensive review of design and topologies," IET Electr. Power Appl., vol. 13, no. 3, pp. 310-321, Jan 2019.
  • H. Arihara and K. Akatsu, "Basic Properties of an Axial-Type Switched Reluctance Motor," IEEE Trans. Ind. Appl., vol. 49, no.1, pp. 59-65, Jan.-Feb. 2013.
  • J. Ma, J. Li, H. Fang, Z. Li, Z. Liang, Z. Fu, et al., "Optimal Design of an Axial-Flux Switched Reluctance Motor With Grain-Oriented Electrical Steel," IEEE Trans. Ind. Appl., vol. 53, no.6, pp. 5327-5337, Nov.-Dec. 2017.
  • M. H. Belhadi, G. Krebs, C. Marchand, H. Hannoun, and X. Mininger, "Evaluation of axial SRM for electric vehicle application," Electr. Power Syst. Res., vol. 148, pp. 155-161, July 2017.
  • R. Shiwakoti, B. Poudel, E. Amiri, M. Divandari, and A. Damaki, "Design and Analysis of Modular Axial Flux Switched Reluctance Motor," presented at the IEEE International Electric Machines & Drives Conference (IEMDC), 12-15 May 2019.
  • M. J. Kermanipour and B. Ganji, "Modification in Geometric Structure of Double-Sided Axial Flux Switched Reluctance Motor for Mitigating Torque Ripple," Can. J. Elect. Comput. E., vol. 38, no. 4, pp. 318-322, Fall 2015.
  • C. Sahin and M. Karacor, "Principle, design and analysis of a novel axial flux switched reluctance machine with fully pitched winding structure," Electrical Engineering, to be published DOI: https://doi.org/10.1007/s00202-021-01417-z.
  • R. Alipour-Sarabi, Z. Nasiri-Gheidari, and H. Oraee, "Development of a Three-Dimensional Magnetic Equivalent Circuit Model for Axial Flux Machines," IEEE Trans. Ind. Electron., vol. 67, no.7, pp. 5758-5767, July 2020.
  • M. Çeçen and B. GÜMÜŞ, "Sonlu elemanlar yöntemi kullanarak farklı tip sargılar için güç transformatörün 2B analiz sonuçlarının karşılaştırılması," DUJE, vol. 9, no. 2, pp. 701-712, Sep. 2018.
  • K. Kiyota, S. Nakano, and A. Chiba, "A Fast Calculation Method of Optimal Ratio of Outer Diameter and Axial Length for Torque Improvement in Switched Reluctance Motor," IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 5802-5811, June 2018.
  • W. Sun, Q. Li, L. Sun, L. Zhu, and L. Li, "Electromagnetic Analysis on Novel Rotor-Segmented Axial-Field SRM Based on Dynamic Magnetic Equivalent Circuit," IEEE Trans. Magn., vol. 55, no. 6, pp. 1-5, Mar. 2019.
  • K. Deguchi, S. Sumita, and Y. Enomoto, "Analytical Method Applying a Mathematical Model for Axial-Gap-Switched Reluctance Motor," Electr Eng. Jpn., vol. 196, no. 3, pp. 30-38, Nov. 2016.
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Cihan Şahin 0000-0001-6430-7827

Publication Date June 28, 2022
Submission Date February 20, 2022
Published in Issue Year 2022

Cite

IEEE C. Şahin, “Eksenel akılı tam adım sargılı anahtarlamalı relüktans makinasının stator/rotor kutup şekillerinin motor performansına etkisi”, DÜMF MD, vol. 13, no. 2, pp. 181–189, 2022, doi: 10.24012/dumf.1076302.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456