Research Article
BibTex RIS Cite

Katkı türü ve oranının yüksek plastisiteli kilin kompaksiyon parametrelerine etkisi

Year 2022, , 359 - 369, 28.06.2022
https://doi.org/10.24012/dumf.1099931

Abstract

Puzolanik özeliğe sahip katkı malzemeleri kullanılarak killi zeminlerin geoteknik özelliklerinin iyileştirilmesi olarak tanımlanan stabilizasyon, kolay uygulanabilir, ekonomik ve birçoğunun çevre dostu olması nedeniyle günümüzde çok fazla tercih edilmektedir. Killi zeminlere farklı puzolanlar katılarak başarılı bir stabilizasyon sonrasında oluşan dokusal değişimler sonucunda zeminin kompaksiyon parametreleri olarak adlandırılan optimum su içeriği değeri artarken, maksimum kuru birim ağırlığı ise azalmaktadır.
Bu çalışmada, farklı tür ve oranda kullanılan katkı malzemelerinin yüksek plastisiteli bentonitin kompaksiyon parametreleri üzerindeki etkileri incelenmiştir. Bu amaçla katkı malzemesi olarak sönmüş kireç, uçucu kül, asidik ve bazik karakterli tüflerin değişik oranlarda kullanıldığı katkılı örnekler hazırlanmış ve bu örneklerde Standard Proktor deneyleri gerçekleştirilmiştir. Yapılan çalışmalardan elde edilen sonuçlara göre, sadece bir katkı malzemesinin kullanılması durumunda en iyi sonuçlar %5 asidik tüf katkılı örnekte ve %10 sönmüş kireç katkılı örnekte elde edilmiştir. İki tip katkı malzemesini birlikte kullanıldığı örneklerde ise en iyi sonuçlar %10 oranında asidik tüf ve sönmüş kirecin birlikte kullanıldığı örnekte ortaya çıkmıştır. Bu çalışmadan elde edilen sonuçlar, özellikle sönmüş kireç ve asidik tüf katkısının birlikte kullanılması durumunda kompaksiyon parametrelerinde en iyi sonuçların elde edildiğini göstermektedir.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırmalar Birimi

Project Number

MF.16.64

References

  • [1] N.O. Attoh-Okine, “Lime treatment of laterite soils and gravels-revisited,” Constr. Build. Mater, vol. 9 no.5, pp. 283¬-287, 1995. doi.org/10.1016/0950-0618(95)00030-J.
  • [2] J. Hilf, “Compacted fill. in: H. Fang (Ed.). Foundation Engineering Handbook,” Van Nostrand Reinhold. NewYork ABD, 1991.
  • [3] D. Little, “Stabilization of pavement subgrades base courses with lime,” Lime Association of Texas. ABD, 1995.
  • [4] F. Bell, “Lime stabilization of clay minerals and soils,” Eng. Geol. vol. 42, no. 4, pp. 223-237, 1996, doi.org/10.1016/0013-7952(96)00028-2.
  • [5] D.I. et al., “Development of stabilization and solidification in lime-clay mixes,” Geotechnique, vol. 51, no. 6, pp. 533-543, 2001, doi.org/10.1680/geot.2001.51.6.533.
  • [6] A.J., Puppala et al., “Resilient moduli of treated clays from repeated load triaxial test,” Transportation Research Records: Journal of Transportation Research Board, pp. 68-74:1821, 2003, doi.org/10.3141/1821-08.
  • [7] E. Kalkan and S. Akbulut, "The positive effects of silica fume on the permeability swelling pressure and compressive strength of natural clay liners,” Eng. Geol.,vol. 73, no. (1-2), pp. 145-156, 2004, doi.org/10.1016/j.enggeo.2004.01.001.
  • [8] J. Mallela, et al., “Consideration of limestabilized layers in mechanistic-empirical pavement design,” The National Lime Association. Arlington. Virginia, USA, 2004.
  • [9] A.A. Al-Rawas, A.W. Hugo and H. Al-Sami, “Effect of lime, cement and artificial pozzolan on the swelling potential of an expansive soil from Oman,” Building & Environment 40. Elsevier; pp.267-281, 2005, doi.org/10.1016/j.buildenv.2004.08.028.
  • [10] H.S. Aksoy, M. Yılmaz, E.E. Akarsu, “Killi bir zeminin Tunçbilek uçucu külü kullanılarak stabilizasyonu”. Doğu Anadolu Bölgeleri Araştırmaları, 2008.
  • [11] O. Cuisinier et al., “Microstructure and hydraulic conductivity of a compacted lime-treated soil,” Eng. Geol., vol. 123, no. 3, pp. 187-193, 2011, doi.org/10.1016/j.enggeo.2011.07.010.
  • [12] K, Harichane et al., “Effet de la combinaison de la chaux et de la pouzzolane naturelle sur la durabilité des sols argileux” Proceedings of 29th meeting of AUGC-Tlemcen, Algeria, 2011.
  • [13] K.M.A. Hossain, L.Mol, “Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes,” Construction and Building Materials, vol. 25, no. 8, pp. 3495-3501, 2011, doi.org/10.1016/j.conbuildmat.2011.03.042.
  • [14] T. Ramadas, N.D. Kumar and G. Yesuratnam, “Geotechnical characteristics of three expansive soils treated with lime and fly ash,” Int. J. Earth Sci. Eng., vol. 4, pp. 46-49, 2011.
  • [15] O. Azadegan, S.H. Jafari, J. Li, “Compaction characteristics and mechanical properties of lime/cement treated granular soils,” Electron. J. Geotech. Eng., vol. 17, pp. 2275-2284. 2012.
  • [16] B. Lin et al., “Effect of fly ash on the behavior of expansive soils: microscopic analysis” Environmental Engineering Geoscience, vol. 19, no. 1, pp. 85-94, 2013, doi.org/10.2113/gseegeosci.19.1.85.
  • [17] A. Mahamedi and M. Khemissa,” Cement stabilization of compacted expansive clay,” Online j. Sci. Technol., vol. 3, no. 1, pp. 33-38, 2013.
  • [18] D, Wang et al., “Effect of lime treatment on geotechnical properties of Dunkirk Sediments in France,” Road Materials and Pavement Design, vol. 14, no. 3, pp. 485-503, 2013, doi.org/10.1080/14680629.2012.755935
  • [19] P. Voottipruex and P. Jamsawang, “Characteristics of expansive soils improved with cement and fly ash in Northern Thailand,” Geomechanics and Engineering An Int'l Journal, vol. 6, no. 5, pp. 437-453, 2014, DOI: 10.12989/gae.2014.6.5.437.
  • [20] M.R. Asgari, A.B. Dezfuli and M. Bayat, “Experimental study on stabilization of a low plasticity clayey coil with Ccment/lime,” Arabian Journal of Geosciences, vol. 8, no. 3, pp. 1439-1452, , 2015, doi.org/10.1007/s12517-013-1173-1
  • [21] A.R. Goodarzi, S.H. Goodarzi, H.R, “Akbari, Assessing geo-mechanical and micro-structural performance of modified expansive clayey soil by silica fume as industrial waste,” Iranian Journal of Science And Technology-Transactions of Civil Engineering, vol. 39, no. C2, pp. 333-350, 2015, doi.org/10.22099/IJSTC.2015.3138.
  • [22] G. Yang et al., “Geogrid-reinforced lime-treated cohesive soil retaining wall: Case study and implications” Geotext. Geomembranes, vol 35, pp. 112-118, 2012, doi.org/10.1016/j.geotexmem.2012.09.001.
  • [23] S.Y. Chong and K.A. Kassim, “Consolidation characteristics of lime column and geotextile encapsulated lime column (GELC) stabilized pontian marine clay,” Electron. J. Geotech. Eng., vol. 19A, pp. 129-141, 2014.
  • [24] J. Locat, M.A. Berube and M. Choquette, “Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development” Can. Geotech. J., vol. 27, no. 3, pp.294-304, 1990, doi.org/10.1139/t90-040.
  • [25] S, Wild et al., “Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates,” Clay Miner., vol. 31, no. 3, pp. 423-433, 1996, DOI: 10.1180/claymin.1996.031.3.12.
  • [26] C.M. Geiman, “Stabilization of soft clay subgrades in Virginia phase I laboratory study,” MA Thesis. Virginia Polytechnic Institute and State University, 2005.
  • [27] J.M. Kinuthia, S. Wild and G.I, Jones, “Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilised kaolinite,” Appl. Clay Sci., vol. 14, no. 1-3, pp. 27-45, 1999, doi.org/10.1016/S0169-1317(98)00046-5.
  • [28] M. Imbabi, C. Carrigan, S. McKenna, “Trends and developments in green cement and concrete technology,” International Journal of Sustainable Built Environment, vol. 1, no. 2, pp. 194-216, 2012, doi.org/10.1016/j.ijsbe.2013.05.001.
  • [29] S.N. Keskin and Ö. Çimen, “Killi zeminlerin mühendislik özelliklerinin iyileştirilmesinde pomza kullanımının araştırılması,” I. Isparta Pomza Sempozyumu, pp. 97-101, 1997.
  • [30] A. Okucu, “Bigadiç ve Turnatepe (Balıkesir) Yörelerindeki Zeolitik ve Perlitik Tüflerin Puzolanik Özellikleri,” Doktora Tezi, Balıkesir Üniversitesi, Balıkesir, 1998.
  • [31] S. Fındık, “Karayolu esnek üstyapıları alttemel tabakasının stabilizasyonunda hafif agregaların kullanılabilirliği,” Yüksek Lisans tezi, Süleyman Demirel Üniversitesi, Isparta, 2005.
  • [32] Ü. Bulut, “Perlitin Puzolanik Aktivitesi,” Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul, 2007.
  • [33] Y. Kavlak, “Isparta Gelincik pomzasının karayolu esnek üstyapıları taban zemini stabilizasyonunda kullanımı,” Yüksek Lisans tezi, Süleyman Demirel Üniversitesi, Isparta, 2008.
  • [34] A. Akbulut, “Bentonit," MTA Eğitim Serisi-32, Ankara, 1996.
  • [35] Y. Önem, “Sanayi Madenleri,” Kozan Ofset, Ankara, 2000.
  • [36] S. Genç, “Şişen Zeminler ve Bentonit-kaolin karışımlarının şişme özellikleri,” Yüksek lisans tezi. İstanbul Üniversitesi, İstanbul, 2009.
  • [37] K. Özaydın, “Zemin Mekaniği”, Birsen Yayınevi, İstanbul, 2000.
  • [38] Y. Aslan Topçuoğlu, “Farklı katkı maddelerinin zeminlerin mühendislik özellikleri üzerindeki etkisi,” Doktora tezi, Fırat Üniversitesi, Elazığ, 2020.
  • [39] Çimento-Bölüm 1: Genel Çimentolar- Bileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartları Enstitüsü, TS EN 197-1, 2012.
  • [40] M. Çakır, “Uçucu kül ile zemin stabilizasyonu. Yüksek lisans tezi,” İstanbul Teknik Üniversitesi, İstanbul, 1999.
  • [41] D. Alkaya, “Uçucu kül katkısının dolgu zeminlerin stabilitesine etkisi”, Doktora tezi, Pamukkale Üniversitesi, 2002.
  • [42] H. Toros, “Afşin Elbistan Termik santrali uçucu küllerinin yapı malzemesi olarak kullanılması. Yüksek lisans tezi, İstanbul Teknik Üniversitesi; İstanbul, 1987.
  • [43] Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, American Society for Testing and Materials, ASTM C 618-12, 2012.
  • [44] A. Atterberg, “Uber die Physikalicshe bodenuntersuchung, and uber die plastizitat der tone, internationale mittelungen fur bodenkunde”,C.1, pp. 10-43, Berlin, 1911.
  • [45] A. Casagrande, “Research on the Atterberg limits of soils,” Pub. Roads, C.13, pp. 121-136, 1932.
  • [46] I.L. “Whyte Soil plasticity and strength-A new approach for using extrusion,” Ground Engineering, no.15, pp. 16-24, 1982.
  • [47] Standard Test Methods for Liquid Limit. Plastic Limit and Plasticity Index of Soils. American Society for Testing and Materials, ASTM D4318-17e1, 2017.
  • [48] Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, American Society for Testing and Materials ASTM D698- 12e2, 2012.
  • [49] I.T. Jawad et al., “Soil stabilization using lime: advantages, disadvantages and proposing a potential plternative”, Research Journal of Applied Sciences, Engineering and Technology, vol. 8, no. 4, 510–520, 2014, doi.org/10.19026/rjaset.8.1000 .
  • [50] A.M. Tabatabi, “Pavement,” University’s Publication Center, Tehran, Iran, 1997.
  • [51] M.R. Thompson, “Engineering properties of limesoil mixtures”, Journal of Materials, vol. 4, no. 4, pp. 968-969, 1969.

The effect of additive type and ratio on the compaction parameters of high plasticity clay

Year 2022, , 359 - 369, 28.06.2022
https://doi.org/10.24012/dumf.1099931

Abstract

Stabilization, which is defined as the improvement of the geotechnical properties of clayey soils by using additives with pozzolanic properties, is highly preferred today because it is easy to apply, economical and many of them are environmentally friendly. As a result of the textural changes that occur after successful stabilization by adding different pozzolans to the clayey soils, the optimum water content value, which is called the compaction parameters of the soil, increases, while the maximum dry unit weight decreases. In this study, the effects of additives used in different types and ratios on the compaction parameters of high plasticity bentonite were investigated. For this purpose, samples with additives using slaked lime, fly ash, acidic and basic tuffs in different proportions were prepared and Standard Proctor tests were carried out on these samples. According to the results obtained from the studies, the best results were obtained in the case of using only one additive material, in the sample with 5% acidic tuff and in the sample with 10% slaked lime. In the examples where two types of additives were used together, the best results were obtained in the example where 10% acidic tuff and slaked lime were used together. The results obtained from this study show that the best results are obtained in compaction parameters, especially when slaked lime and acidic tuff additive are used together.

Project Number

MF.16.64

References

  • [1] N.O. Attoh-Okine, “Lime treatment of laterite soils and gravels-revisited,” Constr. Build. Mater, vol. 9 no.5, pp. 283¬-287, 1995. doi.org/10.1016/0950-0618(95)00030-J.
  • [2] J. Hilf, “Compacted fill. in: H. Fang (Ed.). Foundation Engineering Handbook,” Van Nostrand Reinhold. NewYork ABD, 1991.
  • [3] D. Little, “Stabilization of pavement subgrades base courses with lime,” Lime Association of Texas. ABD, 1995.
  • [4] F. Bell, “Lime stabilization of clay minerals and soils,” Eng. Geol. vol. 42, no. 4, pp. 223-237, 1996, doi.org/10.1016/0013-7952(96)00028-2.
  • [5] D.I. et al., “Development of stabilization and solidification in lime-clay mixes,” Geotechnique, vol. 51, no. 6, pp. 533-543, 2001, doi.org/10.1680/geot.2001.51.6.533.
  • [6] A.J., Puppala et al., “Resilient moduli of treated clays from repeated load triaxial test,” Transportation Research Records: Journal of Transportation Research Board, pp. 68-74:1821, 2003, doi.org/10.3141/1821-08.
  • [7] E. Kalkan and S. Akbulut, "The positive effects of silica fume on the permeability swelling pressure and compressive strength of natural clay liners,” Eng. Geol.,vol. 73, no. (1-2), pp. 145-156, 2004, doi.org/10.1016/j.enggeo.2004.01.001.
  • [8] J. Mallela, et al., “Consideration of limestabilized layers in mechanistic-empirical pavement design,” The National Lime Association. Arlington. Virginia, USA, 2004.
  • [9] A.A. Al-Rawas, A.W. Hugo and H. Al-Sami, “Effect of lime, cement and artificial pozzolan on the swelling potential of an expansive soil from Oman,” Building & Environment 40. Elsevier; pp.267-281, 2005, doi.org/10.1016/j.buildenv.2004.08.028.
  • [10] H.S. Aksoy, M. Yılmaz, E.E. Akarsu, “Killi bir zeminin Tunçbilek uçucu külü kullanılarak stabilizasyonu”. Doğu Anadolu Bölgeleri Araştırmaları, 2008.
  • [11] O. Cuisinier et al., “Microstructure and hydraulic conductivity of a compacted lime-treated soil,” Eng. Geol., vol. 123, no. 3, pp. 187-193, 2011, doi.org/10.1016/j.enggeo.2011.07.010.
  • [12] K, Harichane et al., “Effet de la combinaison de la chaux et de la pouzzolane naturelle sur la durabilité des sols argileux” Proceedings of 29th meeting of AUGC-Tlemcen, Algeria, 2011.
  • [13] K.M.A. Hossain, L.Mol, “Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes,” Construction and Building Materials, vol. 25, no. 8, pp. 3495-3501, 2011, doi.org/10.1016/j.conbuildmat.2011.03.042.
  • [14] T. Ramadas, N.D. Kumar and G. Yesuratnam, “Geotechnical characteristics of three expansive soils treated with lime and fly ash,” Int. J. Earth Sci. Eng., vol. 4, pp. 46-49, 2011.
  • [15] O. Azadegan, S.H. Jafari, J. Li, “Compaction characteristics and mechanical properties of lime/cement treated granular soils,” Electron. J. Geotech. Eng., vol. 17, pp. 2275-2284. 2012.
  • [16] B. Lin et al., “Effect of fly ash on the behavior of expansive soils: microscopic analysis” Environmental Engineering Geoscience, vol. 19, no. 1, pp. 85-94, 2013, doi.org/10.2113/gseegeosci.19.1.85.
  • [17] A. Mahamedi and M. Khemissa,” Cement stabilization of compacted expansive clay,” Online j. Sci. Technol., vol. 3, no. 1, pp. 33-38, 2013.
  • [18] D, Wang et al., “Effect of lime treatment on geotechnical properties of Dunkirk Sediments in France,” Road Materials and Pavement Design, vol. 14, no. 3, pp. 485-503, 2013, doi.org/10.1080/14680629.2012.755935
  • [19] P. Voottipruex and P. Jamsawang, “Characteristics of expansive soils improved with cement and fly ash in Northern Thailand,” Geomechanics and Engineering An Int'l Journal, vol. 6, no. 5, pp. 437-453, 2014, DOI: 10.12989/gae.2014.6.5.437.
  • [20] M.R. Asgari, A.B. Dezfuli and M. Bayat, “Experimental study on stabilization of a low plasticity clayey coil with Ccment/lime,” Arabian Journal of Geosciences, vol. 8, no. 3, pp. 1439-1452, , 2015, doi.org/10.1007/s12517-013-1173-1
  • [21] A.R. Goodarzi, S.H. Goodarzi, H.R, “Akbari, Assessing geo-mechanical and micro-structural performance of modified expansive clayey soil by silica fume as industrial waste,” Iranian Journal of Science And Technology-Transactions of Civil Engineering, vol. 39, no. C2, pp. 333-350, 2015, doi.org/10.22099/IJSTC.2015.3138.
  • [22] G. Yang et al., “Geogrid-reinforced lime-treated cohesive soil retaining wall: Case study and implications” Geotext. Geomembranes, vol 35, pp. 112-118, 2012, doi.org/10.1016/j.geotexmem.2012.09.001.
  • [23] S.Y. Chong and K.A. Kassim, “Consolidation characteristics of lime column and geotextile encapsulated lime column (GELC) stabilized pontian marine clay,” Electron. J. Geotech. Eng., vol. 19A, pp. 129-141, 2014.
  • [24] J. Locat, M.A. Berube and M. Choquette, “Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development” Can. Geotech. J., vol. 27, no. 3, pp.294-304, 1990, doi.org/10.1139/t90-040.
  • [25] S, Wild et al., “Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates,” Clay Miner., vol. 31, no. 3, pp. 423-433, 1996, DOI: 10.1180/claymin.1996.031.3.12.
  • [26] C.M. Geiman, “Stabilization of soft clay subgrades in Virginia phase I laboratory study,” MA Thesis. Virginia Polytechnic Institute and State University, 2005.
  • [27] J.M. Kinuthia, S. Wild and G.I, Jones, “Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilised kaolinite,” Appl. Clay Sci., vol. 14, no. 1-3, pp. 27-45, 1999, doi.org/10.1016/S0169-1317(98)00046-5.
  • [28] M. Imbabi, C. Carrigan, S. McKenna, “Trends and developments in green cement and concrete technology,” International Journal of Sustainable Built Environment, vol. 1, no. 2, pp. 194-216, 2012, doi.org/10.1016/j.ijsbe.2013.05.001.
  • [29] S.N. Keskin and Ö. Çimen, “Killi zeminlerin mühendislik özelliklerinin iyileştirilmesinde pomza kullanımının araştırılması,” I. Isparta Pomza Sempozyumu, pp. 97-101, 1997.
  • [30] A. Okucu, “Bigadiç ve Turnatepe (Balıkesir) Yörelerindeki Zeolitik ve Perlitik Tüflerin Puzolanik Özellikleri,” Doktora Tezi, Balıkesir Üniversitesi, Balıkesir, 1998.
  • [31] S. Fındık, “Karayolu esnek üstyapıları alttemel tabakasının stabilizasyonunda hafif agregaların kullanılabilirliği,” Yüksek Lisans tezi, Süleyman Demirel Üniversitesi, Isparta, 2005.
  • [32] Ü. Bulut, “Perlitin Puzolanik Aktivitesi,” Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul, 2007.
  • [33] Y. Kavlak, “Isparta Gelincik pomzasının karayolu esnek üstyapıları taban zemini stabilizasyonunda kullanımı,” Yüksek Lisans tezi, Süleyman Demirel Üniversitesi, Isparta, 2008.
  • [34] A. Akbulut, “Bentonit," MTA Eğitim Serisi-32, Ankara, 1996.
  • [35] Y. Önem, “Sanayi Madenleri,” Kozan Ofset, Ankara, 2000.
  • [36] S. Genç, “Şişen Zeminler ve Bentonit-kaolin karışımlarının şişme özellikleri,” Yüksek lisans tezi. İstanbul Üniversitesi, İstanbul, 2009.
  • [37] K. Özaydın, “Zemin Mekaniği”, Birsen Yayınevi, İstanbul, 2000.
  • [38] Y. Aslan Topçuoğlu, “Farklı katkı maddelerinin zeminlerin mühendislik özellikleri üzerindeki etkisi,” Doktora tezi, Fırat Üniversitesi, Elazığ, 2020.
  • [39] Çimento-Bölüm 1: Genel Çimentolar- Bileşim, Özellikler ve Uygunluk Kriterleri, Türk Standartları Enstitüsü, TS EN 197-1, 2012.
  • [40] M. Çakır, “Uçucu kül ile zemin stabilizasyonu. Yüksek lisans tezi,” İstanbul Teknik Üniversitesi, İstanbul, 1999.
  • [41] D. Alkaya, “Uçucu kül katkısının dolgu zeminlerin stabilitesine etkisi”, Doktora tezi, Pamukkale Üniversitesi, 2002.
  • [42] H. Toros, “Afşin Elbistan Termik santrali uçucu küllerinin yapı malzemesi olarak kullanılması. Yüksek lisans tezi, İstanbul Teknik Üniversitesi; İstanbul, 1987.
  • [43] Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, American Society for Testing and Materials, ASTM C 618-12, 2012.
  • [44] A. Atterberg, “Uber die Physikalicshe bodenuntersuchung, and uber die plastizitat der tone, internationale mittelungen fur bodenkunde”,C.1, pp. 10-43, Berlin, 1911.
  • [45] A. Casagrande, “Research on the Atterberg limits of soils,” Pub. Roads, C.13, pp. 121-136, 1932.
  • [46] I.L. “Whyte Soil plasticity and strength-A new approach for using extrusion,” Ground Engineering, no.15, pp. 16-24, 1982.
  • [47] Standard Test Methods for Liquid Limit. Plastic Limit and Plasticity Index of Soils. American Society for Testing and Materials, ASTM D4318-17e1, 2017.
  • [48] Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, American Society for Testing and Materials ASTM D698- 12e2, 2012.
  • [49] I.T. Jawad et al., “Soil stabilization using lime: advantages, disadvantages and proposing a potential plternative”, Research Journal of Applied Sciences, Engineering and Technology, vol. 8, no. 4, 510–520, 2014, doi.org/10.19026/rjaset.8.1000 .
  • [50] A.M. Tabatabi, “Pavement,” University’s Publication Center, Tehran, Iran, 1997.
  • [51] M.R. Thompson, “Engineering properties of limesoil mixtures”, Journal of Materials, vol. 4, no. 4, pp. 968-969, 1969.
There are 51 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Yasemin Aslan 0000-0002-3135-5926

Zülfü Gürocak 0000-0002-1049-8346

Project Number MF.16.64
Publication Date June 28, 2022
Submission Date April 7, 2022
Published in Issue Year 2022

Cite

IEEE Y. Aslan and Z. Gürocak, “Katkı türü ve oranının yüksek plastisiteli kilin kompaksiyon parametrelerine etkisi”, DÜMF MD, vol. 13, no. 2, pp. 359–369, 2022, doi: 10.24012/dumf.1099931.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456