Research Article
BibTex RIS Cite

Türbülans Yoğunluğunun Geçiş Yer Tahminine Etkisinin Bölgesel Korelasyon Geçiş Modeli ile İncelenmesi

Year 2022, , 627 - 634, 30.09.2022
https://doi.org/10.24012/dumf.1146580

Abstract

Aerodinamik katsayılar hava/deniz araçlarının uçuş performans analizlerinde kullanılan en önemli katsayılardır. Serbest akış türbülans yoğunluğu, sayısal akışkanlar dinamiği analizleri ve rüzgar tüneli testleri ile elde edilen aerodinamik katsayılar üzerinde kayda değer etkiye sahiptir. Bu çalışmada, serbest akış türbülans yoğunluğunun küremsi geometri üzerindeki türbülans geçiş yerine etkisi en yaygın kullanılan bölgesel korelasyon geçiş modeli ile analiz edilerek incelenmiştir. Analizler 6.5 x 106 Reynolds sayısında, 0 ve 5 derece farklı hücum açısında gerçekleştirilmiştir. 5 derece hücum açısında yapılan analiz sonuçları hali hazırda mevcut deneysel çalışma ile karşılaştırılmıştır. Serbest akış yoğunluğunun etkisi, eksenel ve normal kuvvet katsayıları ile yüzey sürtünme katsayı dağılımı üzerinden değerlendirilmiştir. Eksenel ve normal kuvvet katsayıları incelendiğinde serbest akış türbülans yoğunluğunun artmasıyla katsayıların arttığı gözlemlenmiştir. Çalışmada ele alınan türbülans yoğunluğu aralığı içerisinde, katsayılarda oluşan farkların uçuş performans analizlerinde kayda değer fark yaratabileceği değerlendirilmiştir. Yüzey sürtünme katsayıları değerlendirildiğinde, geçiş modeli serbest akış türbülans yoğunluğunun artmasıyla geçiş yerini beklenildiği gibi daha önde tahmin etmiştir. Fakat modelin geometri üzerindeki geçiş bölgesi geometrisini deneysel sonuçlara göre oldukça farklı bulduğu görülmüştür.

References

  • [1] G.B. Schubauer, H. K. Skramstad, “Laminar boundary layer oscillations and stability of laminar flow,” National Bureau of standards, paper 1772, JAS 14, pp. 69-78, 1947.
  • [2] G. Charnay, G. Comte-Bellot, J. Mathiew, “Development of a turbulent boundary layer on a flat plate in an external turbulent flow,” AGARD CCP93, Paper No. 27, 1971.
  • [3] H. U. Meier, and H. P. Kreplin, , “Influence on Free-Stream Turbulence on the Boundary Layer Development,” AIAA Journal, Vol. 18, No. 1, pp. 11-15, 1980. DOI: 10.2514/3.50724.
  • [4] M. F. Blair, “Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development; Part 1 – Experimental data,” Journal of Heat Transfer, Vol. 105, pp. 33-47, 1983.
  • [5] L. Eca, M. Hoekstra, “The numerical friction line,” Journal of Marine Science and Technology, Vol. 13, No.4, pp. 328-345, 2008. DOI: 10.1007/s00773-008-0018-1.
  • [6] D. D. Pasquale, A. Rona, and S. J. Garrett, “A selective review of cfd transition models,” 39th AIAA Fluid Dynamics Conference, San Antonio, Texas, AIAA Paper 2009-3812, 2009. DOI: 10.2514/6.2009-3812.
  • [7] A. V. Boiko, S. V. Kirilovskiy, A. A. Maslov, and T. V. Poplavskaya, “Engineering modelling of the laminar-turbulent transition: acheivements and problems (review),” Journal of Applied Mechanics and Technical Physics, Vol. 56, No. 5, pp. 761–776, 2015. DOI: 10.1134/S002189441505003X.
  • [8] A. Krumbein, N. Krimmelbein, C. Grabe, and N. Shengyang, “Development and application of transition prediction techniques in an unstructured CFD code,” AIAA 2015-2476, AIAA Aviation 45th AIAA Fluid Dynamics Conference, Dallas, TX, 22-26 June 2015. DOI: 10.2514/6.2015-2476.
  • [9] F. R. Menter, R. B. Langtry, Y. B. Likki, Y. B.Suzen, P. G. Huang, and S. Volker, "A correlation-based transition model using local variables: part I — model formulation," Journal of Turbomachinery, 128(3), pp. 412-422,2006. DOI: 10.1115/1.2184352.
  • [10] R. B. Langtry, and F. R. Menter, "Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes," AIAA Journal, Vol. 47, No. 12, pp. 2894–2906, 2009. DOI: 10.2514/1.42362.
  • [11] C. Grabe, A. Krumbein, “Evaluation of a correlation-based transition model and comparison with the eN method,” Journal of Aircraft, Vol. 49, No. 6, pp. 1765-1773, 2012. DOI: 10.2514/1.C031448.
  • [12] J.G. Coder, M. D. Maughmer, “Comparisons of theoretical methods for predicting airfoil aerodynamic characteristics,” Journal of Aircraft, Vol. 51, No. 1, pp. 183-191, 2014. DOI: 10.2514/1.C032232.
  • [13] F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, Vol. 32, No. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • [14] R. Lopes, L. Eca, G. Vaz, and M. Kerkvliet, “Assessing numerical aspects of transitional flow simulations using the RANS equations,” International Journal of Computational Fluid Dynamics, Vol. 135, No. 3, pp. 157-178, 2021. DOI: 10.1080/10618562.2020.1870962.
  • [15] G. Vaz, F. Jaouen, and M. Hoekstra, “Free-surface viscous flow computations: validation of urans code FreSCo,” 28th International Conference on Ocean, Offshore and Arctic Engineering, Vol. 43451, pp. 425–437, 2009. DOI: 10.1115/OMAE2009-79398.
  • [16] C. Seyfert, and A. Krumbein, “Comparison of a local correlation-based transition model with a eN-method for transition prediction,” New Results in Numerical and Experimental Fluid Mechanics VIII, Vol. 121, Springer, Berlin, Heidelberg, pp. 541-548, 2013. DOI: 10.1007/978-3-642-35680-3_64.
  • [17] C. Seyfert, “Application of a transition transport model to industrially relevant aerodynamic configurations,” ODAS 2011 – 11th ONERA-DLR Aerospace Symposium, Toulouse, France, Conference Proceedings, pp. 1-8, 8-10 February 2011.
  • [18] C. Seyfert, A. Krumbein, “Evaluation of a correlation-based transition model and comparison with the eN-method”, Journal of Aircraft, Vol. 49, No. 6, pp. 1765-1773, 2012. DOI: 10.2514/1.C031448.
  • [19] C. L. Rumsey, and E. M. Lee-Rausch, “NASA trapezoidal wing computations including transition and advanced turbulence modelling,” Journal of Aircraft, Vol. 52, No. 2, pp. 496-509, 2015. DOI: 10.2514/1.C032754.
  • [20] H. Atik, “Estimation of Discretization uncertainty using the γ-Reθ transition model for transitional flows on 6:1 spheroid”, ASME Journal of Fluids Engineering, Vol. 144, pp. 111501-1-12, 2022. DOI: 10.1115/1.4054740.
  • [21] H. U. Meier, U. Michel, and H. P. Kreplin, “The Influence of wind tunnel turbulence on the boundary layer transition,” DFVLR-AVA, Report No. IB 222-86 A 39, 1986.
  • [22] H. P. Kreplin, H. Vollmers, H. U. Meier, “Wall shear stress measurements on an inclined prolate spheroid in the DFVLR 3m x 3m low speed wind tunnel, Gottingen,” DFVLR-AVA, Report No. IB 222-84 A 33, 1985.

Effect of Turbulence Intensity on Transition Location Estimation Using Local Correlation Transition Model

Year 2022, , 627 - 634, 30.09.2022
https://doi.org/10.24012/dumf.1146580

Abstract

Aerodynamic parameters are among the most important parameters in flight performance analyses of air/sea vehicles. Free stream turbulence intensity has significant importance on aerodynamic parameters obtained with computational fluid dynamic analyses and wind tunnel tests measurements. In this study, the effect of free stream turbulence intensity on the transition locations of spheroid geometry using with the widely accepted local correlation transition model. The computations are performed at 6.5 x 106 Reynolds number with 0 and 5 degree angle of attacks. The computations at 5 degree angle of attack are compared with an available experimental study. The effect of free stream turbulence intensity is investigated with axial force coefficient, normal force coefficient, and surface friction coefficient distributions. It is seen that axial and normal force coefficients increase with increasing free stream turbulence intensity. The differences in force coefficients obtained with the free stream intensity range used in the study shall create noteworthy effects in flight performance analyses. When surface friction coefficients are investigated, the transition model estimates the transition locations earlier while free stream turbulence intensity increases as expected. However, the transition front geometry is obtained significantly different with respect to the experimental results.

References

  • [1] G.B. Schubauer, H. K. Skramstad, “Laminar boundary layer oscillations and stability of laminar flow,” National Bureau of standards, paper 1772, JAS 14, pp. 69-78, 1947.
  • [2] G. Charnay, G. Comte-Bellot, J. Mathiew, “Development of a turbulent boundary layer on a flat plate in an external turbulent flow,” AGARD CCP93, Paper No. 27, 1971.
  • [3] H. U. Meier, and H. P. Kreplin, , “Influence on Free-Stream Turbulence on the Boundary Layer Development,” AIAA Journal, Vol. 18, No. 1, pp. 11-15, 1980. DOI: 10.2514/3.50724.
  • [4] M. F. Blair, “Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development; Part 1 – Experimental data,” Journal of Heat Transfer, Vol. 105, pp. 33-47, 1983.
  • [5] L. Eca, M. Hoekstra, “The numerical friction line,” Journal of Marine Science and Technology, Vol. 13, No.4, pp. 328-345, 2008. DOI: 10.1007/s00773-008-0018-1.
  • [6] D. D. Pasquale, A. Rona, and S. J. Garrett, “A selective review of cfd transition models,” 39th AIAA Fluid Dynamics Conference, San Antonio, Texas, AIAA Paper 2009-3812, 2009. DOI: 10.2514/6.2009-3812.
  • [7] A. V. Boiko, S. V. Kirilovskiy, A. A. Maslov, and T. V. Poplavskaya, “Engineering modelling of the laminar-turbulent transition: acheivements and problems (review),” Journal of Applied Mechanics and Technical Physics, Vol. 56, No. 5, pp. 761–776, 2015. DOI: 10.1134/S002189441505003X.
  • [8] A. Krumbein, N. Krimmelbein, C. Grabe, and N. Shengyang, “Development and application of transition prediction techniques in an unstructured CFD code,” AIAA 2015-2476, AIAA Aviation 45th AIAA Fluid Dynamics Conference, Dallas, TX, 22-26 June 2015. DOI: 10.2514/6.2015-2476.
  • [9] F. R. Menter, R. B. Langtry, Y. B. Likki, Y. B.Suzen, P. G. Huang, and S. Volker, "A correlation-based transition model using local variables: part I — model formulation," Journal of Turbomachinery, 128(3), pp. 412-422,2006. DOI: 10.1115/1.2184352.
  • [10] R. B. Langtry, and F. R. Menter, "Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes," AIAA Journal, Vol. 47, No. 12, pp. 2894–2906, 2009. DOI: 10.2514/1.42362.
  • [11] C. Grabe, A. Krumbein, “Evaluation of a correlation-based transition model and comparison with the eN method,” Journal of Aircraft, Vol. 49, No. 6, pp. 1765-1773, 2012. DOI: 10.2514/1.C031448.
  • [12] J.G. Coder, M. D. Maughmer, “Comparisons of theoretical methods for predicting airfoil aerodynamic characteristics,” Journal of Aircraft, Vol. 51, No. 1, pp. 183-191, 2014. DOI: 10.2514/1.C032232.
  • [13] F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, Vol. 32, No. 8, pp. 1598–1605, 1994. DOI: 10.2514/3.12149.
  • [14] R. Lopes, L. Eca, G. Vaz, and M. Kerkvliet, “Assessing numerical aspects of transitional flow simulations using the RANS equations,” International Journal of Computational Fluid Dynamics, Vol. 135, No. 3, pp. 157-178, 2021. DOI: 10.1080/10618562.2020.1870962.
  • [15] G. Vaz, F. Jaouen, and M. Hoekstra, “Free-surface viscous flow computations: validation of urans code FreSCo,” 28th International Conference on Ocean, Offshore and Arctic Engineering, Vol. 43451, pp. 425–437, 2009. DOI: 10.1115/OMAE2009-79398.
  • [16] C. Seyfert, and A. Krumbein, “Comparison of a local correlation-based transition model with a eN-method for transition prediction,” New Results in Numerical and Experimental Fluid Mechanics VIII, Vol. 121, Springer, Berlin, Heidelberg, pp. 541-548, 2013. DOI: 10.1007/978-3-642-35680-3_64.
  • [17] C. Seyfert, “Application of a transition transport model to industrially relevant aerodynamic configurations,” ODAS 2011 – 11th ONERA-DLR Aerospace Symposium, Toulouse, France, Conference Proceedings, pp. 1-8, 8-10 February 2011.
  • [18] C. Seyfert, A. Krumbein, “Evaluation of a correlation-based transition model and comparison with the eN-method”, Journal of Aircraft, Vol. 49, No. 6, pp. 1765-1773, 2012. DOI: 10.2514/1.C031448.
  • [19] C. L. Rumsey, and E. M. Lee-Rausch, “NASA trapezoidal wing computations including transition and advanced turbulence modelling,” Journal of Aircraft, Vol. 52, No. 2, pp. 496-509, 2015. DOI: 10.2514/1.C032754.
  • [20] H. Atik, “Estimation of Discretization uncertainty using the γ-Reθ transition model for transitional flows on 6:1 spheroid”, ASME Journal of Fluids Engineering, Vol. 144, pp. 111501-1-12, 2022. DOI: 10.1115/1.4054740.
  • [21] H. U. Meier, U. Michel, and H. P. Kreplin, “The Influence of wind tunnel turbulence on the boundary layer transition,” DFVLR-AVA, Report No. IB 222-86 A 39, 1986.
  • [22] H. P. Kreplin, H. Vollmers, H. U. Meier, “Wall shear stress measurements on an inclined prolate spheroid in the DFVLR 3m x 3m low speed wind tunnel, Gottingen,” DFVLR-AVA, Report No. IB 222-84 A 33, 1985.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hediye Atik 0000-0002-5858-9132

Publication Date September 30, 2022
Submission Date July 21, 2022
Published in Issue Year 2022

Cite

IEEE H. Atik, “Türbülans Yoğunluğunun Geçiş Yer Tahminine Etkisinin Bölgesel Korelasyon Geçiş Modeli ile İncelenmesi”, DÜMF MD, vol. 13, no. 3, pp. 627–634, 2022, doi: 10.24012/dumf.1146580.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456