Research Article
BibTex RIS Cite

Yumuşak Kil zeminlerde Basınçlı ve Basınçsız Gömülü Çelik Boruların Davranışının Karşılaştırılması

Year 2023, , 191 - 196, 23.03.2023
https://doi.org/10.24012/dumf.1217395

Abstract

Deprem sonrası can damarı sistemlerinde oluşan hasarlara bağlı ortaya çıkan maddi ve manevi kayıplar toplumun yaşam kalitesini olumsuz etkileyen önemli durumlardan biri olarak bilinir. Deprem kaynaklı fay hareketleri gömülü boru hatları için önemli tehlikelerden biridir. Bu çalışmada, yumuşak kil zeminde gömülü basınçlı ve basınçsız çelik boru hattının doğrusal olmayan sayısal modellenmesi yapılmaktadır. Bu amaç doğrultusunda, gömülü boru hatların uygulamasında yaygın olarak kullanılan X80 çelik sınıfından olan ve tipik çap-kalınlık oranı (D/t) 57.6 olan boru çeşidi ele alınmaktadır. Çalışmada, 90o, 70o, 45o ve 30o olmak üzere dört farklı fay boru hattı kesişme açısı modellenmiştir. Analiz aracı olarak sonlu farklar yöntemini kullanan FLAC3D yazılım kullanılmıştır. Sayısal modellemelerden elde edilen sonuçlar, kesişme açısının 90o olduğu durumda hem basınçlı hem de basınçsız borularda yerel bükülme sınır durumunun baskın olduğunu göstermektedir. Basınçlı borunun yerel burkulması basınçsız boruya göre yaklaşık %20 daha büyük fay hareketinde meydana geldiği görülmektedir. Ayrıca, sonuçlar, basınç altına olan boru hattının sınır durumları basınçsız duruma göre daha büyük fay hareketlerinde meydana geldiğini göstermektedir. Fayla 30o açıyla kesişen basınçlı boru %3 sınır durumuna ulaşamamış iken, 70o ve 45o kesişme açılarında fay hareketinde basınçsız boruya göre sırasıyla yaklaşık %8 ve %33 artış meydana geldiği görülmüştür. Sunulan sonuçlar, kalıcı zemin kaynaklı yer değiştirmeye maruz gömülü boru hatlarının performansa dayalı tasarım çerçevesi geliştirilmesinde önemli olacağı düşünülmektedir.

References

  • [1] Vazouras P, Karamanos SA. Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas. Bull Earthq Eng 2017; 15:4999–5024. doi:10.1007/s10518-017-0148-0.
  • [2] Takada S, Nakayama M, Ueno J, Tajima C. Report on Taiwan Earthquake. RCUSS, Earthquake Laboratory of Kobe University, 1999. p. 2–9.
  • [3] Kennedy RP, Chow AW, Williamson RA. Fault movement effects on buried oil pipeline. Journal of Transportation Engineering, ASCE 1977;103:617–33.
  • [4] Kennedy RP, Kincaid RH. Fault crossing design for buried gas oil pipelines. In: Proceedings of the ASME, PVP conference, vol. 77; 1983. p. 1–9.
  • [5] Wang LRL, Yeh YA. A refined seismic analysis and design of buried pipeline for fault movement. Earthquake Engineering and Structural Dynamics 1985;13:75–96.
  • [6] Vougioukas EA, Theodossis C, Carydis PG. Seismic analysis of buried pipelines subjected to vertical fault movement. Journal of Technical Councils, ASCE 1979;105(TCI):432–41.
  • [7] MaCaffrey MA, O’Rourke TD. Buried pipeline response to reverse faulting during the 1971 San Fernando Earthquake. In: Proceedings of the ASME, PVP conference, vol. 77; 1983. p. 151–9.
  • [8] Desmod TP, Power MS, Taylor CL, Lau RW. Behavior of large-diameter pipeline at fault crossings. ASCE, TCLEE 1995;1995(6):296–303.
  • [9] Wang LLR, Wang LJ. Parametric study of buried pipelines due to large fault movement. ASCE, TCLEE 1995;1995(6):152–9.
  • [10] Takada S, Hassani N, Fukuda K. A new proposal for simplified design of buried steel pipes crossing active faults. Earthquake Engineering and Structural Dynamics 2001;2001(30):1243–57.
  • [11] Lillig DB, Newbury BD, Altstadt SA. The second ISOPE strain-based design symposium—a review. In: Proceedings of the international society of offshore & polar engineering conference, Osaka, Japan; 2009.
  • [12] Kokavessis NK, Anagnostidis GS. Finite element modelling of buried pipelines subjected to seismic loads: soil structure interaction using contact elements. In: Proceedings of ASME PVP conference, Vancouver, BC, Canada; 2006.
  • [13] Karamitros DK, Bouckovalas GD, Kouretzis GP. Stress analysis of buried steel pipelines at strike–slip fault crossings. Soil Dyn Earthq Eng 2007;27:200–11.
  • [14] Liu M, Wang Y-Y, Yu Z. Response of pipelines under fault crossing. In: Proceedings of the international offshore and polar engineering conference, Vancouver, BC, Canada; 2008.
  • [15] Ha D, Abdoun TH, O’Rourke MJ, Symans MD, O’Rourke TD, Palmer MC, et al. Buried high-density polyethylene pipelines subjected to normal and strike-slip faulting—a centrifuge investigation. Canadian Geotechnical Journal 2008;45: 1733–42.
  • [16] Ha D, Abdoun TH, O’Rourke MJ, Symans MD, O’Rourke TD, Palmer MC, et al. Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones. ASCE Journal of Geotechnical and Geoenvironmental Engineering 2008;134(10):1501–15.
  • [17] Abdoun TH, Ha D, O’Rourke MJ, Symans MD, O’Rourke TD, Palmer MC, et al. Factors influencing the behavior of buried pipelines subjected to earthquake faulting. Soil Dynamics and Earthquake Engineering 2009;29:415–27.
  • [18] Trifonov OV, Cherniy VP. A semi-analytical approach to a nonlinear stress– strain analysis of buried steel pipelines crossing active faults. Soil Dyn Earthq Eng 2010;30:1298–308.
  • [19] Trifonov OV, Cherniy VP. Elastoplastic stress–strain analysis of buried steel pipelines subjected to fault displacements with account for service loads. Soil Dyn Earthq Eng 2012;33(1):54–62.
  • [20] Morshed A, Roy K, and Hawlader B. Modeling of buried pipelines in dense sand for oblique movement in vertical - lateral plane. J Pipeline Sys Eng and Practice 2020; 11(4):04020050.
  • [21] Dey S, Chakraborty S, Tesfamariam S. Structural performance of buried pipeline undergoing strike-slip fault rupture in 3D using a non-linear sand model. Soil Dyn Earthq Eng. 2020; 135: 106180. https://doi.org/10.1016/j.soildyn.2020.106180.
  • [22] Melissianos V, Vamvatsikos D, Gantes C. Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture. Soil Dyn Earthq Eng. 2020; 135:101-116.
  • [23] Polynikis Vazouras , Spyros A. Karamanos , Panos Dakoulas. Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dynamics and Earthquake Engineering. Volume 41, October 2012, Pages 164-180.
  • [24] Gresnigt AM, Karamanos SA. Local buckling strength and deformation capacity of pipes. In: Proceedings of the 19th international offshore and polar engineering conference. Osaka, Japan; 2009. p. 212–23.
  • [25] Canadian Standard Association. Oil and gas pipeline systems, CSA-Z662. Mississauga, Ontario, Canada; 2007.
Year 2023, , 191 - 196, 23.03.2023
https://doi.org/10.24012/dumf.1217395

Abstract

References

  • [1] Vazouras P, Karamanos SA. Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas. Bull Earthq Eng 2017; 15:4999–5024. doi:10.1007/s10518-017-0148-0.
  • [2] Takada S, Nakayama M, Ueno J, Tajima C. Report on Taiwan Earthquake. RCUSS, Earthquake Laboratory of Kobe University, 1999. p. 2–9.
  • [3] Kennedy RP, Chow AW, Williamson RA. Fault movement effects on buried oil pipeline. Journal of Transportation Engineering, ASCE 1977;103:617–33.
  • [4] Kennedy RP, Kincaid RH. Fault crossing design for buried gas oil pipelines. In: Proceedings of the ASME, PVP conference, vol. 77; 1983. p. 1–9.
  • [5] Wang LRL, Yeh YA. A refined seismic analysis and design of buried pipeline for fault movement. Earthquake Engineering and Structural Dynamics 1985;13:75–96.
  • [6] Vougioukas EA, Theodossis C, Carydis PG. Seismic analysis of buried pipelines subjected to vertical fault movement. Journal of Technical Councils, ASCE 1979;105(TCI):432–41.
  • [7] MaCaffrey MA, O’Rourke TD. Buried pipeline response to reverse faulting during the 1971 San Fernando Earthquake. In: Proceedings of the ASME, PVP conference, vol. 77; 1983. p. 151–9.
  • [8] Desmod TP, Power MS, Taylor CL, Lau RW. Behavior of large-diameter pipeline at fault crossings. ASCE, TCLEE 1995;1995(6):296–303.
  • [9] Wang LLR, Wang LJ. Parametric study of buried pipelines due to large fault movement. ASCE, TCLEE 1995;1995(6):152–9.
  • [10] Takada S, Hassani N, Fukuda K. A new proposal for simplified design of buried steel pipes crossing active faults. Earthquake Engineering and Structural Dynamics 2001;2001(30):1243–57.
  • [11] Lillig DB, Newbury BD, Altstadt SA. The second ISOPE strain-based design symposium—a review. In: Proceedings of the international society of offshore & polar engineering conference, Osaka, Japan; 2009.
  • [12] Kokavessis NK, Anagnostidis GS. Finite element modelling of buried pipelines subjected to seismic loads: soil structure interaction using contact elements. In: Proceedings of ASME PVP conference, Vancouver, BC, Canada; 2006.
  • [13] Karamitros DK, Bouckovalas GD, Kouretzis GP. Stress analysis of buried steel pipelines at strike–slip fault crossings. Soil Dyn Earthq Eng 2007;27:200–11.
  • [14] Liu M, Wang Y-Y, Yu Z. Response of pipelines under fault crossing. In: Proceedings of the international offshore and polar engineering conference, Vancouver, BC, Canada; 2008.
  • [15] Ha D, Abdoun TH, O’Rourke MJ, Symans MD, O’Rourke TD, Palmer MC, et al. Buried high-density polyethylene pipelines subjected to normal and strike-slip faulting—a centrifuge investigation. Canadian Geotechnical Journal 2008;45: 1733–42.
  • [16] Ha D, Abdoun TH, O’Rourke MJ, Symans MD, O’Rourke TD, Palmer MC, et al. Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones. ASCE Journal of Geotechnical and Geoenvironmental Engineering 2008;134(10):1501–15.
  • [17] Abdoun TH, Ha D, O’Rourke MJ, Symans MD, O’Rourke TD, Palmer MC, et al. Factors influencing the behavior of buried pipelines subjected to earthquake faulting. Soil Dynamics and Earthquake Engineering 2009;29:415–27.
  • [18] Trifonov OV, Cherniy VP. A semi-analytical approach to a nonlinear stress– strain analysis of buried steel pipelines crossing active faults. Soil Dyn Earthq Eng 2010;30:1298–308.
  • [19] Trifonov OV, Cherniy VP. Elastoplastic stress–strain analysis of buried steel pipelines subjected to fault displacements with account for service loads. Soil Dyn Earthq Eng 2012;33(1):54–62.
  • [20] Morshed A, Roy K, and Hawlader B. Modeling of buried pipelines in dense sand for oblique movement in vertical - lateral plane. J Pipeline Sys Eng and Practice 2020; 11(4):04020050.
  • [21] Dey S, Chakraborty S, Tesfamariam S. Structural performance of buried pipeline undergoing strike-slip fault rupture in 3D using a non-linear sand model. Soil Dyn Earthq Eng. 2020; 135: 106180. https://doi.org/10.1016/j.soildyn.2020.106180.
  • [22] Melissianos V, Vamvatsikos D, Gantes C. Methodology for failure mode prediction of onshore buried steel pipelines subjected to reverse fault rupture. Soil Dyn Earthq Eng. 2020; 135:101-116.
  • [23] Polynikis Vazouras , Spyros A. Karamanos , Panos Dakoulas. Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dynamics and Earthquake Engineering. Volume 41, October 2012, Pages 164-180.
  • [24] Gresnigt AM, Karamanos SA. Local buckling strength and deformation capacity of pipes. In: Proceedings of the 19th international offshore and polar engineering conference. Osaka, Japan; 2009. p. 212–23.
  • [25] Canadian Standard Association. Oil and gas pipeline systems, CSA-Z662. Mississauga, Ontario, Canada; 2007.
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hadi Khan Baba Zadeh 0000-0001-9764-7799

Publication Date March 23, 2023
Submission Date December 11, 2022
Published in Issue Year 2023

Cite

IEEE H. Khan Baba Zadeh, “Yumuşak Kil zeminlerde Basınçlı ve Basınçsız Gömülü Çelik Boruların Davranışının Karşılaştırılması”, DÜMF MD, vol. 14, no. 1, pp. 191–196, 2023, doi: 10.24012/dumf.1217395.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456