Research Article
BibTex RIS Cite

Senkrosıkıştırma dönüşümü ve derin transfer öğrenimi ile Alzheimer hastalığının EEG tabanlı otomatik tespiti

Year 2023, , 75 - 85, 23.03.2023
https://doi.org/10.24012/dumf.1246052

Abstract

Alzheimer hastalığı, demansın en sık görülen türü olan ilerleyici bir nörodejeneratif bozukluktur. Hafıza kaybı, bilişsel kabiliyetlerde azalma ve davranışsal sorunlara yol açarak, günlük yaşamı derinden etkilemektedir. Hastalıkla mücadelede en önemli adımlardan biri hızlı ve doğru tanının konmasıdır. Dolayısıyla, bilgisayar destekli tanı sistemlerinin histopatolojik analizlere alternatif olarak geliştirilmesi önem arz etmektedir. Bu çalışmada, Alzheimer hastalığının otomatik olarak tespitinde EEG tabanlı bir sınıflandırma modeli tanıtılmıştır. Önerilen model EEG senkrosıkıştırma temsillerinin çeşitli uyarlanmış ön eğitimli derin evrişimsel sinir ağı mimariler ile sınıflandırılmasından oluşmaktadır. Senkrosıkıştırma yöntemi, EEG işaretlerini zamanla değişen salınım özelliklerine sahip görüntü örüntülerine dönüştürmek için kullanılmıştır. Akabinde ise EEG görüntüleri ön eğitimli SqueezeNet, ResNet, InceptionV3 ve MobileNet derin mimarilerine girdi olarak sunulmuş ve elde edilen sınıflandırma performansları karşılaştırılmıştır. Deneyler, 19 elektrottan (Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, Pz, P3, P4, T5, T6, O1 ve O2) kayıt edilen EEG işaretlerinin her biri için ayrı ayrı uygulanmıştır. Bulgular P3 ve T5 kanallarının Alzheimer tespitinde en etkin serebral konumlar olduğunu ve en iyi sınıflandırma doğruluğunun InceptionV3 modeli ile elde edildiğini göstermiştir. InceptionV3 modeli ile her iki kanal için sınıflandırma doğrulukları sırasıyla %89.50 ve %90.57 olarak elde edilmiştir. Ayrıca serebral korteksteki elektriksel aktivitelerin hastalığa ilişkin karakteristik dinamikleri en belirgin olarak parietal ve tempoaral loblarda yansıttığı gözlemlenmiştir.

References

  • [1] P. A. M. Kanda, E. F. Oliveira, and F. J. Fraga, “EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer’s,” Comput. Methods Programs Biomed., vol. 138, pp. 13–22, 2017, doi: 10.1016/j.cmpb.2016.09.023.
  • [2] A. M. Pineda, F. M. Ramos, L. E. Betting, and A. S. L. O. Campanharo, “Quantile graphs for EEG-based diagnosis of Alzheimer’s disease,” PLoS One, vol. 15, no. 6, pp. 1–15, 2020, doi: 10.1371/journal.pone.0231169.
  • [3] L. Tylová, J. Kukal, V. Hubata-Vacek, and O. Vyšata, “Unbiased estimation of permutation entropy in EEG analysis for Alzheimer’s disease classification,” Biomed. Signal Process. Control, vol. 39, pp. 424–430, 2018, doi: 10.1016/j.bspc.2017.08.012.
  • [4] E. Fide, H. Polat, G. Yener, and M. S. Özerdem, “Effects of Pharmacological Treatments in Alzheimer’s Disease: Permutation Entropy-Based EEG Complexity Study,” Brain Topogr., no. 0123456789, 2022, doi: 10.1007/s10548-022-00927-8.
  • [5] P. Zhao, P. Van-Eetvelt, C. Goh, N. Hudson, S. Wimalaratna, and E. Ifeachor, “Characterization of EEGs in alzheimer’s disease using information theoretic methods,” Annu. Int. Conf. IEEE Eng. Med. Biol. - Proc., pp. 5127–5131, 2007, doi: 10.1109/IEMBS.2007.4353494.
  • [6] L. R. Trambaiolli, N. Spolaôr, A. C. Lorena, R. Anghinah, and J. R. Sato, “Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease,” Clin. Neurophysiol., vol. 128, no. 10, pp. 2058–2067, 2017, doi: 10.1016/j.clinph.2017.06.251.
  • [7] F. A. Rodrigues, C. Alves, A. Pineda, K. Roster, and C. Thielemann, “EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer’s disease and schizophrenia,” J. Phys. Complex., pp. 1–10, 2022, doi: 10.1088/2632-072x/ac5f8d.
  • [8] Y. Chen et al., “DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients,” Phys. A Stat. Mech. its Appl., vol. 490, pp. 171–184, 2018, doi: 10.1016/j.physa.2017.08.009.
  • [9] S. J. Ruiz-Gómez et al., “Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment,” Entropy, vol. 20, no. 1, pp. 1–15, 2018, doi: 10.3390/e20010035.
  • [10] K. D. Tzimourta et al., “EEG window length evaluation for the detection of Alzheimer’s disease over different brain regions,” Brain Sci., vol. 9, no. 4, 2019, doi: 10.3390/brainsci9040081.
  • [11] Y. Zhang and S. Wang, “Detection of Alzheimer’s disease by displacement field and machine learning,” PeerJ, vol. 2015, no. 9, pp. 1–29, 2015, doi: 10.7717/peerj.1251.
  • [12] M. Ismail, K. Hofmann, and M. A. A. El Ghany, “Early Diagnoses of Alzheimer using EEG data and Deep Neural Networks classification,” 2019 IEEE Glob. Conf. Internet Things, GCIoT 2019, 2019, doi: 10.1109/GCIoT47977.2019.9058417.
  • [13] H. Polat, “Time-Frequency Complexity Maps for EEG-Based Diagnosis of Alzheimer ’ s Disease Using a Lightweight Deep Neural Network” Traitement du Signal, vol. 39, no. 6, pp. 2102-2113, 2022, doi: 10.18280/ts.390623.
  • [14] M. Raza, M. Awais, W. Ellahi, N. Aslam, H. X. Nguyen, and H. Le-Minh, “Diagnosis and monitoring of Alzheimer’s patients using classical and deep learning techniques,” Expert Syst. Appl., vol. 136, pp. 353–364, 2019, doi: 10.1016/j.eswa.2019.06.038.
  • [15] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015, doi: 10.1007/s11263-015-0816-y.
  • [16] A. S. L. O. Campanharo, F. M. Ramos, A. M. Pineda, and L. E. Betting, “Data from: Quantile Graphs for EEG-Based Diagnosis of Alzheimer’s Disease,” 2020, doi: 10.17605/OSF.IO/S74QF.
  • [17] R. Cassani, M. Estarellas, R. San-Martin, F. J. Fraga, and T. H. Falk, “Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment,” Dis. Markers, vol. 2018, 2018, doi: 10.1155/2018/5174815.
  • [18] F. Auger et al., “Time-frequency reassignment and synchrosqueezing: An overview,” IEEE Signal Process. Mag., vol. 30, no. 6, pp. 32–41, 2013, doi: 10.1109/MSP.2013.2265316.
  • [19] G. Thakur, E. Brevdo, N. S. Fučkar, and H. T. Wu, “The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications,” Signal Processing, vol. 93, no. 5, pp. 1079–1094, 2013, doi: 10.1016/j.sigpro.2012.11.029.
  • [20] N. D. Kathamuthu et al., “A deep transfer learning-based convolution neural network model for COVID-19 detection using Computed tomography scan images for medical applications,” Adv. Eng. Softw., vol. 175, no. August 2022, p. 103317, 2022, doi: 10.1016/j.advengsoft.2022.103317.
  • [21] R. Naga Swetha, V. K. Shrivastava, and K. Parvathi, “Multiclass skin lesion classification using image augmentation technique and transfer learning models,” Int. J. Intell. Unmanned Syst., 2021, doi: 10.1108/IJIUS-02-2021-0010.
  • [22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 2016, [Online]. Available: http://arxiv.org/abs/1602.07360.
  • [23] H. Polat and M. S. Özerdem, “Derin Transfer Öğrenimi Yaklaşımı ile Kamusal Alanda Medikal Maske Kullanımının Otomatik Kontrolü,” Türk Doğa ve Fen Derg., vol. 10, no. 2, pp. 191–198, 2021, doi: 10.46810/tdfd.948098.
  • [24] A. S. Gaikwad and M. El-Sharkawy, “Pruning convolution neural network (squeezenet) using taylor expansion-based criterion,” 2018 IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT 2018, vol. 2019-Janua, pp. 1–5, 2018, doi: 10.1109/ISSPIT.2018.8705095.
  • [25] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017, [Online]. Available: http://arxiv.org/abs/1704.04861.
  • [26] M. Sandler, A. Howard, M. Zhu, and A. Zhmoginov, “Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf,” pp. 4510–4520, 2018.
  • [27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 2818–2826, 2016, doi: 10.1109/CVPR.2016.308.
  • [28] N. Dong, L. Zhao, C. H. Wu, and J. F. Chang, “Inception v3 based cervical cell classification combined with artificially extracted features,” Appl. Soft Comput., vol. 93, p. 106311, 2020, doi: 10.1016/j.asoc.2020.106311.
  • [29] B. Baheti, S. Gajre, and S. Talbar, “Semantic Scene Understanding in Unstructured Environment with Deep Convolutional Neural Network,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2019-Octob, pp. 790–795, 2019, doi: 10.1109/TENCON.2019.8929376.
  • [30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
  • [31] N. Mammone, C. Ieracitano, and F. C. Morabito, “A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level,” Neural Networks, vol. 124, pp. 357–372, 2020, doi: 10.1016/j.neunet.2020.01.027.
  • [32] V. Padhmashree and A. Bhattacharyya, “Human emotion recognition based on time–frequency analysis of multivariate EEG signal,” Knowledge-Based Syst., vol. 238, p. 107867, 2022, doi: 10.1016/j.knosys.2021.107867.
  • [33] S. Bhattacharya et al., “Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey,” Sustain. Cities Soc., vol. 65, no. November 2020, p. 102589, 2021, doi: 10.1016/j.scs.2020.102589.
  • [34] H. Polat, M. U. Aluçlu, and M. S. Özerdem, “Evaluation of potential auras in generalized epilepsy from EEG signals using deep convolutional neural networks and time-frequency representation,” Biomed. Tech. (Berl)., vol. 65, no. 4, pp. 379–391, Aug. 2020, doi: 10.1515/BMT-2019-0098.
  • [35] Ö. Türk and M. S. Özerdem, “Epilepsy detection by using scalogram based convolutional neural network from eeg signals,” Brain Sci., vol. 9, no. 5, 2019, doi: 10.3390/brainsci9050115.
  • [36] M. Şeker, Y. Özbek, G. Yener, and M. S. Özerdem, “Complexity of EEG Dynamics for Early Diagnosis of Alzheimer’s Disease Using Permutation Entropy Neuromarker,” Comput. Methods Programs Biomed., vol. 206, 2021, doi: 10.1016/j.cmpb.2021.106116.
  • [37] N. N. Kulkarni and V. K. Bairagi, “Extracting Salient Features for EEG-based Diagnosis of Alzheimer’s Disease Using Support Vector Machine Classifier,” IETE J. Res., vol. 63, no. 1, pp. 11–22, 2017, doi: 10.1080/03772063.2016.1241164.
  • [38] V. Bairagi, “EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features,” Int. J. Inf. Technol., vol. 10, no. 3, pp. 403–412, 2018, doi: 10.1007/s41870-018-0165-5.
Year 2023, , 75 - 85, 23.03.2023
https://doi.org/10.24012/dumf.1246052

Abstract

References

  • [1] P. A. M. Kanda, E. F. Oliveira, and F. J. Fraga, “EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer’s,” Comput. Methods Programs Biomed., vol. 138, pp. 13–22, 2017, doi: 10.1016/j.cmpb.2016.09.023.
  • [2] A. M. Pineda, F. M. Ramos, L. E. Betting, and A. S. L. O. Campanharo, “Quantile graphs for EEG-based diagnosis of Alzheimer’s disease,” PLoS One, vol. 15, no. 6, pp. 1–15, 2020, doi: 10.1371/journal.pone.0231169.
  • [3] L. Tylová, J. Kukal, V. Hubata-Vacek, and O. Vyšata, “Unbiased estimation of permutation entropy in EEG analysis for Alzheimer’s disease classification,” Biomed. Signal Process. Control, vol. 39, pp. 424–430, 2018, doi: 10.1016/j.bspc.2017.08.012.
  • [4] E. Fide, H. Polat, G. Yener, and M. S. Özerdem, “Effects of Pharmacological Treatments in Alzheimer’s Disease: Permutation Entropy-Based EEG Complexity Study,” Brain Topogr., no. 0123456789, 2022, doi: 10.1007/s10548-022-00927-8.
  • [5] P. Zhao, P. Van-Eetvelt, C. Goh, N. Hudson, S. Wimalaratna, and E. Ifeachor, “Characterization of EEGs in alzheimer’s disease using information theoretic methods,” Annu. Int. Conf. IEEE Eng. Med. Biol. - Proc., pp. 5127–5131, 2007, doi: 10.1109/IEMBS.2007.4353494.
  • [6] L. R. Trambaiolli, N. Spolaôr, A. C. Lorena, R. Anghinah, and J. R. Sato, “Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease,” Clin. Neurophysiol., vol. 128, no. 10, pp. 2058–2067, 2017, doi: 10.1016/j.clinph.2017.06.251.
  • [7] F. A. Rodrigues, C. Alves, A. Pineda, K. Roster, and C. Thielemann, “EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer’s disease and schizophrenia,” J. Phys. Complex., pp. 1–10, 2022, doi: 10.1088/2632-072x/ac5f8d.
  • [8] Y. Chen et al., “DCCA cross-correlation coefficients reveals the change of both synchronization and oscillation in EEG of Alzheimer disease patients,” Phys. A Stat. Mech. its Appl., vol. 490, pp. 171–184, 2018, doi: 10.1016/j.physa.2017.08.009.
  • [9] S. J. Ruiz-Gómez et al., “Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment,” Entropy, vol. 20, no. 1, pp. 1–15, 2018, doi: 10.3390/e20010035.
  • [10] K. D. Tzimourta et al., “EEG window length evaluation for the detection of Alzheimer’s disease over different brain regions,” Brain Sci., vol. 9, no. 4, 2019, doi: 10.3390/brainsci9040081.
  • [11] Y. Zhang and S. Wang, “Detection of Alzheimer’s disease by displacement field and machine learning,” PeerJ, vol. 2015, no. 9, pp. 1–29, 2015, doi: 10.7717/peerj.1251.
  • [12] M. Ismail, K. Hofmann, and M. A. A. El Ghany, “Early Diagnoses of Alzheimer using EEG data and Deep Neural Networks classification,” 2019 IEEE Glob. Conf. Internet Things, GCIoT 2019, 2019, doi: 10.1109/GCIoT47977.2019.9058417.
  • [13] H. Polat, “Time-Frequency Complexity Maps for EEG-Based Diagnosis of Alzheimer ’ s Disease Using a Lightweight Deep Neural Network” Traitement du Signal, vol. 39, no. 6, pp. 2102-2113, 2022, doi: 10.18280/ts.390623.
  • [14] M. Raza, M. Awais, W. Ellahi, N. Aslam, H. X. Nguyen, and H. Le-Minh, “Diagnosis and monitoring of Alzheimer’s patients using classical and deep learning techniques,” Expert Syst. Appl., vol. 136, pp. 353–364, 2019, doi: 10.1016/j.eswa.2019.06.038.
  • [15] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015, doi: 10.1007/s11263-015-0816-y.
  • [16] A. S. L. O. Campanharo, F. M. Ramos, A. M. Pineda, and L. E. Betting, “Data from: Quantile Graphs for EEG-Based Diagnosis of Alzheimer’s Disease,” 2020, doi: 10.17605/OSF.IO/S74QF.
  • [17] R. Cassani, M. Estarellas, R. San-Martin, F. J. Fraga, and T. H. Falk, “Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment,” Dis. Markers, vol. 2018, 2018, doi: 10.1155/2018/5174815.
  • [18] F. Auger et al., “Time-frequency reassignment and synchrosqueezing: An overview,” IEEE Signal Process. Mag., vol. 30, no. 6, pp. 32–41, 2013, doi: 10.1109/MSP.2013.2265316.
  • [19] G. Thakur, E. Brevdo, N. S. Fučkar, and H. T. Wu, “The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications,” Signal Processing, vol. 93, no. 5, pp. 1079–1094, 2013, doi: 10.1016/j.sigpro.2012.11.029.
  • [20] N. D. Kathamuthu et al., “A deep transfer learning-based convolution neural network model for COVID-19 detection using Computed tomography scan images for medical applications,” Adv. Eng. Softw., vol. 175, no. August 2022, p. 103317, 2022, doi: 10.1016/j.advengsoft.2022.103317.
  • [21] R. Naga Swetha, V. K. Shrivastava, and K. Parvathi, “Multiclass skin lesion classification using image augmentation technique and transfer learning models,” Int. J. Intell. Unmanned Syst., 2021, doi: 10.1108/IJIUS-02-2021-0010.
  • [22] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” pp. 1–13, 2016, [Online]. Available: http://arxiv.org/abs/1602.07360.
  • [23] H. Polat and M. S. Özerdem, “Derin Transfer Öğrenimi Yaklaşımı ile Kamusal Alanda Medikal Maske Kullanımının Otomatik Kontrolü,” Türk Doğa ve Fen Derg., vol. 10, no. 2, pp. 191–198, 2021, doi: 10.46810/tdfd.948098.
  • [24] A. S. Gaikwad and M. El-Sharkawy, “Pruning convolution neural network (squeezenet) using taylor expansion-based criterion,” 2018 IEEE Int. Symp. Signal Process. Inf. Technol. ISSPIT 2018, vol. 2019-Janua, pp. 1–5, 2018, doi: 10.1109/ISSPIT.2018.8705095.
  • [25] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017, [Online]. Available: http://arxiv.org/abs/1704.04861.
  • [26] M. Sandler, A. Howard, M. Zhu, and A. Zhmoginov, “Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.pdf,” pp. 4510–4520, 2018.
  • [27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 2818–2826, 2016, doi: 10.1109/CVPR.2016.308.
  • [28] N. Dong, L. Zhao, C. H. Wu, and J. F. Chang, “Inception v3 based cervical cell classification combined with artificially extracted features,” Appl. Soft Comput., vol. 93, p. 106311, 2020, doi: 10.1016/j.asoc.2020.106311.
  • [29] B. Baheti, S. Gajre, and S. Talbar, “Semantic Scene Understanding in Unstructured Environment with Deep Convolutional Neural Network,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2019-Octob, pp. 790–795, 2019, doi: 10.1109/TENCON.2019.8929376.
  • [30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
  • [31] N. Mammone, C. Ieracitano, and F. C. Morabito, “A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level,” Neural Networks, vol. 124, pp. 357–372, 2020, doi: 10.1016/j.neunet.2020.01.027.
  • [32] V. Padhmashree and A. Bhattacharyya, “Human emotion recognition based on time–frequency analysis of multivariate EEG signal,” Knowledge-Based Syst., vol. 238, p. 107867, 2022, doi: 10.1016/j.knosys.2021.107867.
  • [33] S. Bhattacharya et al., “Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey,” Sustain. Cities Soc., vol. 65, no. November 2020, p. 102589, 2021, doi: 10.1016/j.scs.2020.102589.
  • [34] H. Polat, M. U. Aluçlu, and M. S. Özerdem, “Evaluation of potential auras in generalized epilepsy from EEG signals using deep convolutional neural networks and time-frequency representation,” Biomed. Tech. (Berl)., vol. 65, no. 4, pp. 379–391, Aug. 2020, doi: 10.1515/BMT-2019-0098.
  • [35] Ö. Türk and M. S. Özerdem, “Epilepsy detection by using scalogram based convolutional neural network from eeg signals,” Brain Sci., vol. 9, no. 5, 2019, doi: 10.3390/brainsci9050115.
  • [36] M. Şeker, Y. Özbek, G. Yener, and M. S. Özerdem, “Complexity of EEG Dynamics for Early Diagnosis of Alzheimer’s Disease Using Permutation Entropy Neuromarker,” Comput. Methods Programs Biomed., vol. 206, 2021, doi: 10.1016/j.cmpb.2021.106116.
  • [37] N. N. Kulkarni and V. K. Bairagi, “Extracting Salient Features for EEG-based Diagnosis of Alzheimer’s Disease Using Support Vector Machine Classifier,” IETE J. Res., vol. 63, no. 1, pp. 11–22, 2017, doi: 10.1080/03772063.2016.1241164.
  • [38] V. Bairagi, “EEG signal analysis for early diagnosis of Alzheimer disease using spectral and wavelet based features,” Int. J. Inf. Technol., vol. 10, no. 3, pp. 403–412, 2018, doi: 10.1007/s41870-018-0165-5.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hasan Polat 0000-0001-5535-4832

Publication Date March 23, 2023
Submission Date February 1, 2023
Published in Issue Year 2023

Cite

IEEE H. Polat, “Senkrosıkıştırma dönüşümü ve derin transfer öğrenimi ile Alzheimer hastalığının EEG tabanlı otomatik tespiti”, DÜMF MD, vol. 14, no. 1, pp. 75–85, 2023, doi: 10.24012/dumf.1246052.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456