Research Article
BibTex RIS Cite

Bölümleyici Kümeleme için Doğru Merkezi Noktaların Tayini

Year 2024, , 277 - 284, 30.06.2024
https://doi.org/10.24012/dumf.1352625

Abstract

Kümeleme, benzer nesneleri aynı kümede ve farklı nesneleri ayrı kümelerde sınıflandırmak için etiketlenmemiş veriler üzerine odaklanan denetimsiz bir veri madenciliği tekniğidir. Hemen hemen her alanda kullanılmaktadır. Özellikle bölümlü kümelemede kümelemedeki temel sorun, verilerin doğası ve küme sayısı hakkında herhangi bir bilgi olmadan, iyi ayrılmış doğal kümelerin elde edilmesidir. Farklı kümeleme süreçleri sonucunda birçok küme elde edilir. Fikir birliği kümelemesinden sonra daha doğru nihai kümeleme çözümüne ulaşılır.
Farklı yaklaşımlarla çeşitli kümeleme sonuçları elde edilebilmektedir. kümeleme algoritmaları, farklı performanslarla sonuç elde edilmesine yol açar. Bu çalışmada farklı çözümlerin daha iyi tek bir çözüme indirgendiği fikir birliği kümeleme sonucui sunulmuştur. Elde edilen sonuçlara dayanarak kıyaslama yapılmıştır. Geleneksel bölümsel kümeleme algoritması ve çeşitleriyle çalışmamıza temel oluşturan bir diğer çalışma birlikte incelenmiştir. Farklı fikir birliği kriterleri ile gerçekleştirilen kümeleme sonuçları çeşitli veri setleri üzerinde uygulanarak incelenmiştir. Doğal kümeleme sonucu olarak küme sayısı değeri de belirlenmeye çalışılmıştır. Son olarak sonuçlarımızın k-ortalama algoritmasından daha iyi performansla çalıştığı gösterilmiştir.

References

  • [1] Ahmed, Mohiuddin, Raihan Seraj, and Syed Mohammed Shamsul Islam. "The k-means algorithm: A comprehensive survey and performance evaluation." Electronics 9.8 (2020): 1295.
  • [2] Asuncion, Arthur, and David Newman. "UCI machine learning repository." (2007).
  • [3] Bai, Liang, Jiye Liang, and Fuyuan Cao. "A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters." Information Fusion 61 (2020): 36-47.
  • [4] Barakbah, Ali Ridho, and K. Arai. "A new algorithm for optimization of K-means clustering with determining maximum distance between centroids." IES 2006, Politeknik Elektronika Negeri Surabaya, ITS (2006).
  • [5] Barakbah, Ali Ridho, and Yasushi Kiyoki. "A fast algorithm for K-means optimization using Pillar algorithm." The 2nd International Workshop with Mentors on Database, Web and Information Management for Young Researchers. 2010.
  • [6] Barakbah, Ali Ridho, and Yasushi Kiyoki. "A pillar algorithm for k-means optimization by distance maximization for initial centroid designation." 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2009.
  • [7] Borlea, Ioan-Daniel, Radu-Emil Precup, and Alexandra-Bianca Borlea. "Improvement of K-means cluster quality by post processing resulted clusters." Procedia Computer Science 199 (2022): 63-70.
  • [8] Cano, José Ramón, et al. "A greedy randomized adaptive search procedure applied to the clustering problem as an initialization process using K-Means as a local search procedure." Journal of Intelligent & Fuzzy Systems 12.3-4 (2002): 235-242.
  • [9] Ezugwu, Absalom E., et al. "A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects." Engineering Applications of Artificial Intelligence 110 (2022): 104743.
  • [10] Ghazal, Taher M. "Performances of K-means clustering algorithm with different distance metrics." Intelligent Automation & Soft Computing 30.2 (2021): 735-742.
  • [11] Goder, Andrey, and Vladimir Filkov. "Consensus clustering algorithms: Comparison and refinement." 2008 Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments (ALENEX). Society for Industrial and Applied Mathematics, 2008.
  • [12] Golalipour, Keyvan, et al. "From clustering to clustering ensemble selection: A review." Engineering Applications of Artificial Intelligence 104 (2021): 104388.
  • [13] Goyal, Poonam, et al. "Spatial locality aware, fast, and scalable slink algorithm for commodity clusters." 2016 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2016.
  • [14] Ikotun, Abiodun M., et al. "K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data." Information Sciences (2022).
  • [15] Jia, Yuheng, et al. "Ensemble Clustering via Co-Association Matrix Self-Enhancement." IEEE Transactions on Neural Networks and Learning Systems (2023).
  • [16] Jumadi Dehotman Sitompul, Bernad, Opim Salim Sitompul, and Poltak Sihombing. "Enhancement clustering evaluation result of davies-bouldin index with determining initial centroid of k-means algorithm." Journal of Physics: Conference Series. Vol. 1235. No. 1. IOP Publishing, 2019.
  • [17] Lancichinetti, Andrea, and Santo Fortunato. "Consensus clustering in complex networks." Scientific reports 2.1 (2012): 336.
  • [18] Sharma, Shweta, and Neha Batra. "Comparative study of single linkage, complete linkage, and ward method of agglomerative clustering." 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEE, 2019.
  • [19] Sinaga, Kristina P., and Miin-Shen Yang. "Unsupervised K-means clustering algorithm." IEEE access 8 (2020): 80716-80727.
  • [20] Sreedhar Kumar, S., et al. "A brief survey of unsupervised agglomerative hierarchical clustering schemes." Int J Eng Technol (UAE) 8.1 (2019): 29-37.
  • [21] Turgut, Emre, Murat Taşyürek, and Nuh AZGINOĞLU. "Kentsel Dönüşüm Sürecinde Binaların Mekânsal Veri Madenciliği Yöntemleri ile Tespiti." Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 13.2 (2022): 161-167.
  • [22] Zhang, Mimi. "Weighted clustering ensemble: A review." Pattern Recognition 124 (2022): 108428.
Year 2024, , 277 - 284, 30.06.2024
https://doi.org/10.24012/dumf.1352625

Abstract

References

  • [1] Ahmed, Mohiuddin, Raihan Seraj, and Syed Mohammed Shamsul Islam. "The k-means algorithm: A comprehensive survey and performance evaluation." Electronics 9.8 (2020): 1295.
  • [2] Asuncion, Arthur, and David Newman. "UCI machine learning repository." (2007).
  • [3] Bai, Liang, Jiye Liang, and Fuyuan Cao. "A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters." Information Fusion 61 (2020): 36-47.
  • [4] Barakbah, Ali Ridho, and K. Arai. "A new algorithm for optimization of K-means clustering with determining maximum distance between centroids." IES 2006, Politeknik Elektronika Negeri Surabaya, ITS (2006).
  • [5] Barakbah, Ali Ridho, and Yasushi Kiyoki. "A fast algorithm for K-means optimization using Pillar algorithm." The 2nd International Workshop with Mentors on Database, Web and Information Management for Young Researchers. 2010.
  • [6] Barakbah, Ali Ridho, and Yasushi Kiyoki. "A pillar algorithm for k-means optimization by distance maximization for initial centroid designation." 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2009.
  • [7] Borlea, Ioan-Daniel, Radu-Emil Precup, and Alexandra-Bianca Borlea. "Improvement of K-means cluster quality by post processing resulted clusters." Procedia Computer Science 199 (2022): 63-70.
  • [8] Cano, José Ramón, et al. "A greedy randomized adaptive search procedure applied to the clustering problem as an initialization process using K-Means as a local search procedure." Journal of Intelligent & Fuzzy Systems 12.3-4 (2002): 235-242.
  • [9] Ezugwu, Absalom E., et al. "A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects." Engineering Applications of Artificial Intelligence 110 (2022): 104743.
  • [10] Ghazal, Taher M. "Performances of K-means clustering algorithm with different distance metrics." Intelligent Automation & Soft Computing 30.2 (2021): 735-742.
  • [11] Goder, Andrey, and Vladimir Filkov. "Consensus clustering algorithms: Comparison and refinement." 2008 Proceedings of the Tenth Workshop on Algorithm Engineering and Experiments (ALENEX). Society for Industrial and Applied Mathematics, 2008.
  • [12] Golalipour, Keyvan, et al. "From clustering to clustering ensemble selection: A review." Engineering Applications of Artificial Intelligence 104 (2021): 104388.
  • [13] Goyal, Poonam, et al. "Spatial locality aware, fast, and scalable slink algorithm for commodity clusters." 2016 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2016.
  • [14] Ikotun, Abiodun M., et al. "K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data." Information Sciences (2022).
  • [15] Jia, Yuheng, et al. "Ensemble Clustering via Co-Association Matrix Self-Enhancement." IEEE Transactions on Neural Networks and Learning Systems (2023).
  • [16] Jumadi Dehotman Sitompul, Bernad, Opim Salim Sitompul, and Poltak Sihombing. "Enhancement clustering evaluation result of davies-bouldin index with determining initial centroid of k-means algorithm." Journal of Physics: Conference Series. Vol. 1235. No. 1. IOP Publishing, 2019.
  • [17] Lancichinetti, Andrea, and Santo Fortunato. "Consensus clustering in complex networks." Scientific reports 2.1 (2012): 336.
  • [18] Sharma, Shweta, and Neha Batra. "Comparative study of single linkage, complete linkage, and ward method of agglomerative clustering." 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEE, 2019.
  • [19] Sinaga, Kristina P., and Miin-Shen Yang. "Unsupervised K-means clustering algorithm." IEEE access 8 (2020): 80716-80727.
  • [20] Sreedhar Kumar, S., et al. "A brief survey of unsupervised agglomerative hierarchical clustering schemes." Int J Eng Technol (UAE) 8.1 (2019): 29-37.
  • [21] Turgut, Emre, Murat Taşyürek, and Nuh AZGINOĞLU. "Kentsel Dönüşüm Sürecinde Binaların Mekânsal Veri Madenciliği Yöntemleri ile Tespiti." Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 13.2 (2022): 161-167.
  • [22] Zhang, Mimi. "Weighted clustering ensemble: A review." Pattern Recognition 124 (2022): 108428.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Machine Learning (Other), Data Management and Data Science (Other)
Journal Section Articles
Authors

Sibel Tarıyan Özyer 0000-0002-0312-9016

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date August 30, 2023
Published in Issue Year 2024

Cite

IEEE S. T. Özyer, “Bölümleyici Kümeleme için Doğru Merkezi Noktaların Tayini”, DÜMF MD, vol. 15, no. 2, pp. 277–284, 2024, doi: 10.24012/dumf.1352625.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456