Research Article
BibTex RIS Cite

Çiğ Sütün Yağlılık Oranının Yakın Kızılötesi Spektroskopi Sinyalleri ile Tespit Edilmesi

Year 2024, , 331 - 339, 30.06.2024
https://doi.org/10.24012/dumf.1420331

Abstract

Süt endüstrisinde süt kalitesi hakkında bilgi veren temel parametrelerden biri sütün yağ oranıdır. Donanım ve yazılım alanındaki gelişmeler çiğ sütün içeriğinin belirlenmesinde hem pratiklik hem de yüksek doğruluk sağlayabilmektedir. Bu çalışmada geniş bir veri kümesi ile yakın kızıl ötesi spektroskopisi ölçümleri kullanılarak çiğ sütün yağlılık oranı az, orta veya çok yağlı olarak sınıflandırılmıştır. Önerilen yöntem ile geniş bir ölçekte spektral ölçüm yapmak yerine sadece 46 spektral ölçüm değeri ile %82.32 oranında sınıflandırma doğruluğu elde edilebileceği gösterilmiştir. Sütün içeriği ürünün kalitesinin belirlenmesinin yanı sıra, ürünün fiyatının belirlenmesinde, beslenen ve süt veren hayvanların sağlığının izlenebilmesi hakkında da bilgiler verir. Bu çalışmada önerilen yöntemin pratik, yüksek doğruluklu ve üretilen sütün düzenli analizini yapabilmeye imkan tanıması ile sürünün sağlığını ve beslenme şeklinin uygunluğunu sürekli takip edilebilmesini olanaklı hale getireceği düşünülmektedir.

References

  • [1] H. G. Yakubu, Z. Kovacs, T. Toth, & G. Bazar, “The recent advances of near-infrared spectroscopy in dairy production—A review”, Critical Reviews in Food Science and Nutrition, 62(3), 810-831, 2022.
  • [2] H. Büning-Pfaue, “Analysis of water in food by near infrared spectroscopy”, Food Chemistry, 82(1), 107-115, 2003.
  • [3] D. Cozzolino, R. G. Dambergs, L. Janik, W. U. Cynkar, & M. Gishen, “Analysis of grapes and wine by near infrared spectroscopy”, Journal of Near Infrared Spectroscopy, 14(5), 279-289, 2006.
  • [4] M. L. Vigni, C. Durante, G. Foca, A. Marchetti, A. Ulrici, & M. Cocchi, “Near infrared spectroscopy and multivariate analysis methods for monitoring flour performance in an industrial bread-making process”, Analytica chimica acta, 642(1-2), 69-76, 2009.
  • [5] S. Zeng, Z. Zhang, X. Cheng, X. Cai, M. Cao, &W. Guo, “Prediction of soluble solids content using near-infrared spectra and optical properties of intact apple and pulp applying PLSR and CNN”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304, 123402, 2024.
  • [6] A. Gastélum-Barrios, G. M. Soto-Zarazúa, A. Escamilla-García, M. Toledano-Ayala, G. Macías-Bobadilla, & D. Jauregui-Vazquez, “Optical methods based on ultraviolet, visible, and near-infrared spectra to estimate fat and protein in raw milk: A review”, Sensors, 20(12), 3356, 2020.
  • [7] S. Kawamura, M. Kawasaki, H. Nakatsuji, & M. Natsuga, “Near-infrared spectroscopic sensing system for online monitoring of milk quality during milking”, Sensing and Instrumentation for Food Quality and Safety, 1, 37-43, 2007.
  • [8] M. Kawasaki, S. Kawamura, M. Tsukahara, S. Morita, M. Komiya, & M. Natsuga, “Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot”, Computers and electronics in agriculture, 63(1), 22-27, 2008.
  • [9] B. Valenti, B. Martin, D. Andueza, C. Leroux, C. Labonne, F. Lahalle, & A. Ferlay, “Infrared spectroscopic methods for the discrimination of cows' milk according to the feeding system, cow breed and altitude of the dairy farm”, International Dairy Journal, 32(1), 26-32, 2013.
  • [10] A. Çelik, “Using Machine Learning Algorithms to Detect Milk Quality”, Eurasian Journal of Food Science and Technology, 6(2), 76-87, 2022.
  • [11] Y. Y. Pu, C. O'Donnell, J. T. Tobin, &N. O'Shea, “Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing”, International Dairy Journal, 103, 104623, 2020.
  • [12] A. Khan, M. T. Munir, W. Yu, & B. R. Young, “Near‐infrared spectroscopy and data analysis for predicting milk powder quality attributes”, International Journal of Dairy Technology, 74(1), 235-245, 2021.
  • [13] M. Asaduzzaman, M. Kerschbaumer, M. Bodner, N. Haman, & M. Scampicchio, “Short-wave near infrared spectroscopy for the quality control of milk”, Journal of Near Infrared Spectroscopy, 28(1), 3-9, 2020.
  • [14] C. Evangelista, L. Basiricò, & U. Bernabucci, “An overview on the use of near infrared spectroscopy (NIRS) on farms for the management of dairy cows”, Agriculture, 11(4), 296, 2021.
  • [15] H. Chen, C. Tan, Z. Lin, & T. Wu, “Classification of different liquid milk by near-infrared spectroscopy and ensemble modeling”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 251, 119460, 2021.
  • [16] J. A. Diaz-Olivares et al., “Near-infrared spectra dataset of milk composition in transmittance mode,” Data in Brief, vol. 51, p. 109767, Dec. 2023.
  • [17] O. Aydemir, “Prediction of Six Products from the Cucurbitaceae Family Using Visible/Near-Infrared Spectroscopic Data”, Journal of Testing and Evaluation, 51(2), 979-988, 2023.
  • [18] A. K. Agrawal, & G. Chakraborty, “Neighborhood component analysis to leverage the class label information during feature selection to enhance the damage classification performance”, Structures, 57, 105174, 2023.
  • [19] J. Dhar, & N. A. Ayele, “Multi-Tier Ensemble Learning Model with Neighborhood Component Analysis to Predict Health Diseases”, IEEE Access, 9, 138677-138715, 2021.
  • [20] S. Raghu, & N. Sriraam, “Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms”, Expert Systems with Applications, 113, 18-32, 2018.
Year 2024, , 331 - 339, 30.06.2024
https://doi.org/10.24012/dumf.1420331

Abstract

References

  • [1] H. G. Yakubu, Z. Kovacs, T. Toth, & G. Bazar, “The recent advances of near-infrared spectroscopy in dairy production—A review”, Critical Reviews in Food Science and Nutrition, 62(3), 810-831, 2022.
  • [2] H. Büning-Pfaue, “Analysis of water in food by near infrared spectroscopy”, Food Chemistry, 82(1), 107-115, 2003.
  • [3] D. Cozzolino, R. G. Dambergs, L. Janik, W. U. Cynkar, & M. Gishen, “Analysis of grapes and wine by near infrared spectroscopy”, Journal of Near Infrared Spectroscopy, 14(5), 279-289, 2006.
  • [4] M. L. Vigni, C. Durante, G. Foca, A. Marchetti, A. Ulrici, & M. Cocchi, “Near infrared spectroscopy and multivariate analysis methods for monitoring flour performance in an industrial bread-making process”, Analytica chimica acta, 642(1-2), 69-76, 2009.
  • [5] S. Zeng, Z. Zhang, X. Cheng, X. Cai, M. Cao, &W. Guo, “Prediction of soluble solids content using near-infrared spectra and optical properties of intact apple and pulp applying PLSR and CNN”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304, 123402, 2024.
  • [6] A. Gastélum-Barrios, G. M. Soto-Zarazúa, A. Escamilla-García, M. Toledano-Ayala, G. Macías-Bobadilla, & D. Jauregui-Vazquez, “Optical methods based on ultraviolet, visible, and near-infrared spectra to estimate fat and protein in raw milk: A review”, Sensors, 20(12), 3356, 2020.
  • [7] S. Kawamura, M. Kawasaki, H. Nakatsuji, & M. Natsuga, “Near-infrared spectroscopic sensing system for online monitoring of milk quality during milking”, Sensing and Instrumentation for Food Quality and Safety, 1, 37-43, 2007.
  • [8] M. Kawasaki, S. Kawamura, M. Tsukahara, S. Morita, M. Komiya, & M. Natsuga, “Near-infrared spectroscopic sensing system for on-line milk quality assessment in a milking robot”, Computers and electronics in agriculture, 63(1), 22-27, 2008.
  • [9] B. Valenti, B. Martin, D. Andueza, C. Leroux, C. Labonne, F. Lahalle, & A. Ferlay, “Infrared spectroscopic methods for the discrimination of cows' milk according to the feeding system, cow breed and altitude of the dairy farm”, International Dairy Journal, 32(1), 26-32, 2013.
  • [10] A. Çelik, “Using Machine Learning Algorithms to Detect Milk Quality”, Eurasian Journal of Food Science and Technology, 6(2), 76-87, 2022.
  • [11] Y. Y. Pu, C. O'Donnell, J. T. Tobin, &N. O'Shea, “Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing”, International Dairy Journal, 103, 104623, 2020.
  • [12] A. Khan, M. T. Munir, W. Yu, & B. R. Young, “Near‐infrared spectroscopy and data analysis for predicting milk powder quality attributes”, International Journal of Dairy Technology, 74(1), 235-245, 2021.
  • [13] M. Asaduzzaman, M. Kerschbaumer, M. Bodner, N. Haman, & M. Scampicchio, “Short-wave near infrared spectroscopy for the quality control of milk”, Journal of Near Infrared Spectroscopy, 28(1), 3-9, 2020.
  • [14] C. Evangelista, L. Basiricò, & U. Bernabucci, “An overview on the use of near infrared spectroscopy (NIRS) on farms for the management of dairy cows”, Agriculture, 11(4), 296, 2021.
  • [15] H. Chen, C. Tan, Z. Lin, & T. Wu, “Classification of different liquid milk by near-infrared spectroscopy and ensemble modeling”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 251, 119460, 2021.
  • [16] J. A. Diaz-Olivares et al., “Near-infrared spectra dataset of milk composition in transmittance mode,” Data in Brief, vol. 51, p. 109767, Dec. 2023.
  • [17] O. Aydemir, “Prediction of Six Products from the Cucurbitaceae Family Using Visible/Near-Infrared Spectroscopic Data”, Journal of Testing and Evaluation, 51(2), 979-988, 2023.
  • [18] A. K. Agrawal, & G. Chakraborty, “Neighborhood component analysis to leverage the class label information during feature selection to enhance the damage classification performance”, Structures, 57, 105174, 2023.
  • [19] J. Dhar, & N. A. Ayele, “Multi-Tier Ensemble Learning Model with Neighborhood Component Analysis to Predict Health Diseases”, IEEE Access, 9, 138677-138715, 2021.
  • [20] S. Raghu, & N. Sriraam, “Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms”, Expert Systems with Applications, 113, 18-32, 2018.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Machine Vision
Journal Section Articles
Authors

Tuğba Aydemir 0000-0003-3370-6504

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date January 15, 2024
Acceptance Date February 22, 2024
Published in Issue Year 2024

Cite

IEEE T. Aydemir, “Çiğ Sütün Yağlılık Oranının Yakın Kızılötesi Spektroskopi Sinyalleri ile Tespit Edilmesi”, DÜMF MD, vol. 15, no. 2, pp. 331–339, 2024, doi: 10.24012/dumf.1420331.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456