Research Article
BibTex RIS Cite

Microgrid design and comparative analysis for regions with different wind speed and solar radiation rate

Year 2024, , 607 - 613, 30.09.2024
https://doi.org/10.24012/dumf.1482569

Abstract

Over the past decades, approximately 80% of global energy demand has been met by fossil fuels. This situation both harms the environment and human health and threatens the security of energy supply since fossil fuels are limited resources. Renewable energy sources (RES) could be a good solution to these problems. However, due to their instantaneous changeable properties, instead of using RESs alone, establishing hybrid microgrids that combine multiple resources would be a more appropriate solution. Studies on improving the performance and increasing the adoption of MGs are increasing every day in the literature. In this study, using HOMER Pro software, hybrid MGs composed of photovoltaic (PV) panels, wind turbines (WT), diesel generators (DG), and battery storage systems (BSS) were designed for the Turkish provinces of Çanakkale, Diyarbakır, and Rize, which have different wind speeds and solar radiation values, to supply the same load, and the simulation results were compared. As a result of the simulation, the net present cost (NPC) of the designed models for Çanakkale, Diyarbakır, and Rize was calculated as $153,560.53, $228,718.34, and $285,946.32, respectively. The levelized cost of energy (LCOE) was $0.193/kWh, $0.293/kWh, and $0.366/kWh, respectively. According to these values, it can be seen that the model designed for Çanakkale was superior to the other models. Moreover, in the model for Çanakkale, the share of RES in total energy generation was the highest at 94.8%. Finally, due to the strong wind potential of Çanakkale province, it was observed that the size of the components constituting the model was smaller compared to other provinces.

References

  • [1] G. Erdal, H. Erdal, ve K. Esengün, "The causality between energy consumption and economic growth in Turkey," Energy Policy, vol. 36, no. 10, pp. 3838-3842, 2008/10/01/ 2008, doi: https://doi.org/10.1016/j.enpol.2008.07.012.
  • [2] A. İpek ve A. Sekin, "Hibrit yenilenebilir enerji sistem tasarımı: Balıkesir örneği," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 13, no. 3, pp. 517-529, 2024.
  • [3] A. Rahman, O. Farrok, ve M. M. Haque, "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, vol. 161, p. 112279, 2022/06/01/ 2022, doi: https://doi.org/10.1016/j.rser.2022.112279.
  • [4] M. F. Zia, E. Elbouchikhi, ve M. Benbouzid, "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, vol. 222, pp. 1033-1055, 2018/07/15/ 2018, doi: https://doi.org/10.1016/j.apenergy.2018.04.103.
  • [5] https://www.enerjiatlasi.com/elektrik-uretimi/ (accessed 03 May 2024, 2024).
  • [6] https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik (accessed 03 January 2024, 2024).
  • [7] A. Hirsch, Y. Parag, ve J. Guerrero, "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and sustainable Energy reviews, vol. 90, pp. 402-411, 2018.
  • [8] B. Kroposki, R. Lasseter, T. Ise, S. Morozumi, S. Papathanassiou, and N. Hatziargyriou, "Making microgrids work," IEEE power and energy magazine, vol. 6, no. 3, pp. 40-53, 2008.
  • [9] C. Merino ve R. Castro, "Optimization of a Hybrid Solar–Wind Microgrid for Sustainable Development: A Case Study in Antofagasta, Chile," Sustainability, vol. 16, no. 9, p. 3668, 2024.
  • [10] L. Farah et al., "Techno-Economic Assessment and Optimization of a Standalone System in Sebira Island, Indonesia," JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA, vol. 26, no. 1, pp. 33-44, 2024.
  • [11] A. Melit, F. Chekired, ve A. Meflah, "Optimal Sizing of a Hybrid Microgrid System in a Mediterranean Climate," in 2023 14th International Renewable Energy Congress (IREC), 2023: IEEE, pp. 1-5.
  • [12] O. Odekunle, T. Asare, ve H. R. Beem, "Feasibility study of a PV/biogas/grid system for the Micro-grid supply at Ashesi University," in 2023 IEEE Green Energy and Smart Systems Conference (IGESSC), 2023: IEEE, pp. 1-6.
  • [13] Z. Yusupov ve N. Almagrahı, "Techno-economic and environmental analysis of microgrid: A case study of Karabuk University," Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi, vol. 41, no. 4, 2023.
  • [14] A. Chebabhi, I. Tegani, A. D. Benhamadouche, ve O. Kraa, "Optimal design and sizing of renewable energies in microgrids based on financial considerations a case study of Biskra, Algeria," Energy Conversion and Management, vol. 291, p. 117270, 2023/09/01/ 2023, doi: https://doi.org/10.1016/j.enconman.2023.117270.
  • [15] P. Jenkins ve A. C. Sonar, "Feasibility Analysis of an Islanded Microgrid in Tohatchi, New Mexico Using HOMER Pro," Energy and Power Engineering, vol. 12, no. 06, pp. 357-374, 2020.
  • [16] M. Jahangiri, F. Karimi Shahmarvandi, R. J. J. o. R. E. Alayi, ve Environment, "Renewable energy-based systems on a residential scale in southern coastal areas of Iran: trigeneration of heat, power, and hydrogen," vol. 8, no. 4, pp. 67-76, 2021.
  • [17] C. Acar, E. Erturk, ve I. Firtina-Ertis, "Performance analysis of a stand-alone integrated solar hydrogen energy system for zero energy buildings," International Journal of Hydrogen Energy, vol. 48, no. 5, pp. 1664-1684, 2023/01/15/ 2023, doi: https://doi.org/10.1016/j.ijhydene.2022.10.051.
  • [18] A. John, S. Basu, Akshay, ve A. Kumar, "Design and evaluation of stand-alone solar-hydrogen energy storage system for academic institute: A case study," Materials Today: Proceedings, vol. 47, pp. 5918-5922, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2021.04.461.
  • [19] P. Tiam Kapen, B. A. Medjo Nouadje, V. Chegnimonhan, G. Tchuen, ve R. Tchinda, "Techno-economic feasibility of a PV/battery/fuel cell/electrolyzer/biogas hybrid system for energy and hydrogen production in the far north region of cameroon by using HOMER pro," Energy Strategy Reviews, vol. 44, p. 100988, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.esr.2022.100988.
  • [20] N. Ennemiri, A. Berrada, A. Emrani, J. Abdelmajid, ve R. El Mrabet, "Optimization of an off-grid PV/biogas/battery hybrid energy system for electrification: A case study in a commercial platform in Morocco," Energy Conversion and Management: X, vol. 21, p. 100508, 2024/01/01/ 2024, doi: https://doi.org/10.1016/j.ecmx.2023.100508.
  • [21] M. U. Khan, M. Hassan, M. H. Nawaz, M. Ali,ve R. Wazir, "Techno-economic Analysis of PV/wind/biomass/biogas hybrid system for remote area electrification of Southern Punjab (Multan), Pakistan using HOMER Pro," in 2018 International conference on power generation systems and renewable energy technologies (PGSRET), 2018: IEEE, pp. 1-6.
  • [22] T. Ma ve M. S. Javed, "Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource," Energy Conversion and Management, vol. 182, pp. 178-190, 2019/02/15/ 2019, doi: https://doi.org/10.1016/j.enconman.2018.12.059.
  • [23] A. M. Hemeida et al., "Optimum design of hybrid wind/PV energy system for remote area," Ain Shams Engineering Journal, vol. 11, no. 1, pp. 11-23, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.asej.2019.08.005.
  • [24] F. A. Khan, N. Pal, ve S. H. Saeed, "Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective," Energy, vol. 233, p. 121114, 2021/10/15/ 2021, doi: https://doi.org/10.1016/j.energy.2021.121114.
  • [25] G. Zhang, C. Xiao, ve N. Razmjooy, "Optimal operational strategy of hybrid PV/wind renewable energy system using homer: a case study," International Journal of Ambient Energy, vol. 43, no. 1, pp. 3953-3966, 2022.
  • [26] https://homerenergy.com/pdf/HOMERHelpManual.pdf (accessed 21 February 2024, 2024).

Farklı rüzgâr hızı ve güneş radyasyon oranına sahip bölgeler için mikro şebeke tasarımı ve karşılaştırmalı analizi

Year 2024, , 607 - 613, 30.09.2024
https://doi.org/10.24012/dumf.1482569

Abstract

Geçtiğimiz on yıllar boyunca küresel enerji talebinin yaklaşık %80’i fosil yakıtlardan karşılanmaktadır. Bu durum hem çevre ve insan sağlığına zarar vermekte hem de fosil yakıtların sınırlı kaynaklar olması nedeniyle enerji arz güvenliğini tehdit etmektedir. Yenilenebilir enerji kaynakları (YEK) bu problemlerin iyi bir çözümü olabilir. Ancak anlık değişebilir özellikleri nedeniyle YEK’lerin tek başına kullanılması yerine birden fazla kaynağın bir arada olduğu hibrit mikro şebekelerin (MŞ) kurulması daha uygun bir çözüm olacaktır. MŞ’lerin performansını arttırmak ve kullanımını yaygınlaştırmak için literatürde yapılan çalışmalar her geçen gün artmaktadır. Bu çalışmada HOMER Pro yazılımı kullanılarak Türkiye’de rüzgâr hızı ve güneş radyasyon değerleri faklı olan Çanakkale, Diyarbakır ve Rize illeri için aynı yükü besleyen fotovoltaik (FV) paneller, rüzgâr türbini (RT), dizel jeneratör (DJ) ve batarya depolama sisteminden (BDS) oluşan bir hibrit MŞ tasarımı yapılmış olup, simülasyon sonuçları karşılaştırılmıştır. Simülasyon sonucunda tasarlanan modellerin net bugünkü maliyet (NPC) değerleri Çanakkale, Diyarbakır ve Rize illeri için sırasıyla 153,560.53 $, 228,718.34 $ ve 285,946.32 $ olarak elde edilmiştir. Seviyelendirilmiş enerji maliyet (LCOE) değeri ise aynı sırayla 0.193 $/kWh, 0.293 $/kWh ve 0.366 $/kWh olarak çıkmıştır. Bu değerlere göre Çanakkale için tasarlanan modelin diğer modellerden daha üstün olduğu görülmektedir. Ayrıca Çanakkale’deki modelde YEK’lerin üretim payı %94.8 ile en yüksek oranda gerçekleşmiştir. Son olarak Çanakkale ilinin sahip olduğu güçlü rüzgâr potansiyelinden dolayı modeli oluşturan bileşenlerin boyutlarının diğer illere göre daha küçük olduğu görülmüştür.

References

  • [1] G. Erdal, H. Erdal, ve K. Esengün, "The causality between energy consumption and economic growth in Turkey," Energy Policy, vol. 36, no. 10, pp. 3838-3842, 2008/10/01/ 2008, doi: https://doi.org/10.1016/j.enpol.2008.07.012.
  • [2] A. İpek ve A. Sekin, "Hibrit yenilenebilir enerji sistem tasarımı: Balıkesir örneği," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 13, no. 3, pp. 517-529, 2024.
  • [3] A. Rahman, O. Farrok, ve M. M. Haque, "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, vol. 161, p. 112279, 2022/06/01/ 2022, doi: https://doi.org/10.1016/j.rser.2022.112279.
  • [4] M. F. Zia, E. Elbouchikhi, ve M. Benbouzid, "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, vol. 222, pp. 1033-1055, 2018/07/15/ 2018, doi: https://doi.org/10.1016/j.apenergy.2018.04.103.
  • [5] https://www.enerjiatlasi.com/elektrik-uretimi/ (accessed 03 May 2024, 2024).
  • [6] https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik (accessed 03 January 2024, 2024).
  • [7] A. Hirsch, Y. Parag, ve J. Guerrero, "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and sustainable Energy reviews, vol. 90, pp. 402-411, 2018.
  • [8] B. Kroposki, R. Lasseter, T. Ise, S. Morozumi, S. Papathanassiou, and N. Hatziargyriou, "Making microgrids work," IEEE power and energy magazine, vol. 6, no. 3, pp. 40-53, 2008.
  • [9] C. Merino ve R. Castro, "Optimization of a Hybrid Solar–Wind Microgrid for Sustainable Development: A Case Study in Antofagasta, Chile," Sustainability, vol. 16, no. 9, p. 3668, 2024.
  • [10] L. Farah et al., "Techno-Economic Assessment and Optimization of a Standalone System in Sebira Island, Indonesia," JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA, vol. 26, no. 1, pp. 33-44, 2024.
  • [11] A. Melit, F. Chekired, ve A. Meflah, "Optimal Sizing of a Hybrid Microgrid System in a Mediterranean Climate," in 2023 14th International Renewable Energy Congress (IREC), 2023: IEEE, pp. 1-5.
  • [12] O. Odekunle, T. Asare, ve H. R. Beem, "Feasibility study of a PV/biogas/grid system for the Micro-grid supply at Ashesi University," in 2023 IEEE Green Energy and Smart Systems Conference (IGESSC), 2023: IEEE, pp. 1-6.
  • [13] Z. Yusupov ve N. Almagrahı, "Techno-economic and environmental analysis of microgrid: A case study of Karabuk University," Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi, vol. 41, no. 4, 2023.
  • [14] A. Chebabhi, I. Tegani, A. D. Benhamadouche, ve O. Kraa, "Optimal design and sizing of renewable energies in microgrids based on financial considerations a case study of Biskra, Algeria," Energy Conversion and Management, vol. 291, p. 117270, 2023/09/01/ 2023, doi: https://doi.org/10.1016/j.enconman.2023.117270.
  • [15] P. Jenkins ve A. C. Sonar, "Feasibility Analysis of an Islanded Microgrid in Tohatchi, New Mexico Using HOMER Pro," Energy and Power Engineering, vol. 12, no. 06, pp. 357-374, 2020.
  • [16] M. Jahangiri, F. Karimi Shahmarvandi, R. J. J. o. R. E. Alayi, ve Environment, "Renewable energy-based systems on a residential scale in southern coastal areas of Iran: trigeneration of heat, power, and hydrogen," vol. 8, no. 4, pp. 67-76, 2021.
  • [17] C. Acar, E. Erturk, ve I. Firtina-Ertis, "Performance analysis of a stand-alone integrated solar hydrogen energy system for zero energy buildings," International Journal of Hydrogen Energy, vol. 48, no. 5, pp. 1664-1684, 2023/01/15/ 2023, doi: https://doi.org/10.1016/j.ijhydene.2022.10.051.
  • [18] A. John, S. Basu, Akshay, ve A. Kumar, "Design and evaluation of stand-alone solar-hydrogen energy storage system for academic institute: A case study," Materials Today: Proceedings, vol. 47, pp. 5918-5922, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.matpr.2021.04.461.
  • [19] P. Tiam Kapen, B. A. Medjo Nouadje, V. Chegnimonhan, G. Tchuen, ve R. Tchinda, "Techno-economic feasibility of a PV/battery/fuel cell/electrolyzer/biogas hybrid system for energy and hydrogen production in the far north region of cameroon by using HOMER pro," Energy Strategy Reviews, vol. 44, p. 100988, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.esr.2022.100988.
  • [20] N. Ennemiri, A. Berrada, A. Emrani, J. Abdelmajid, ve R. El Mrabet, "Optimization of an off-grid PV/biogas/battery hybrid energy system for electrification: A case study in a commercial platform in Morocco," Energy Conversion and Management: X, vol. 21, p. 100508, 2024/01/01/ 2024, doi: https://doi.org/10.1016/j.ecmx.2023.100508.
  • [21] M. U. Khan, M. Hassan, M. H. Nawaz, M. Ali,ve R. Wazir, "Techno-economic Analysis of PV/wind/biomass/biogas hybrid system for remote area electrification of Southern Punjab (Multan), Pakistan using HOMER Pro," in 2018 International conference on power generation systems and renewable energy technologies (PGSRET), 2018: IEEE, pp. 1-6.
  • [22] T. Ma ve M. S. Javed, "Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource," Energy Conversion and Management, vol. 182, pp. 178-190, 2019/02/15/ 2019, doi: https://doi.org/10.1016/j.enconman.2018.12.059.
  • [23] A. M. Hemeida et al., "Optimum design of hybrid wind/PV energy system for remote area," Ain Shams Engineering Journal, vol. 11, no. 1, pp. 11-23, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.asej.2019.08.005.
  • [24] F. A. Khan, N. Pal, ve S. H. Saeed, "Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective," Energy, vol. 233, p. 121114, 2021/10/15/ 2021, doi: https://doi.org/10.1016/j.energy.2021.121114.
  • [25] G. Zhang, C. Xiao, ve N. Razmjooy, "Optimal operational strategy of hybrid PV/wind renewable energy system using homer: a case study," International Journal of Ambient Energy, vol. 43, no. 1, pp. 3953-3966, 2022.
  • [26] https://homerenergy.com/pdf/HOMERHelpManual.pdf (accessed 21 February 2024, 2024).
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Articles
Authors

Mehmet Ali Köprü 0000-0002-3761-399X

Dursun Öztürk 0000-0002-0335-8118

Burak Yıldırım 0000-0002-2118-4297

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date May 12, 2024
Acceptance Date August 15, 2024
Published in Issue Year 2024

Cite

IEEE M. A. Köprü, D. Öztürk, and B. Yıldırım, “Farklı rüzgâr hızı ve güneş radyasyon oranına sahip bölgeler için mikro şebeke tasarımı ve karşılaştırmalı analizi”, DÜMF MD, vol. 15, no. 3, pp. 607–613, 2024, doi: 10.24012/dumf.1482569.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456