Research Article
BibTex RIS Cite

Aşırı öğütülmüş kalkopirit konsantresinden bakırın nitrik asit ve dikromat ortamında seçimli kazanımı

Year 2024, , 653 - 661, 30.09.2024
https://doi.org/10.24012/dumf.1494580

Abstract

Kalkopiritin liçi, kompakt altıgen kristal yapısından dolayı çoğunlukla zordur. Kalkopiritten metal ekstraksiyonunu geliştirmenin yöntemlerinden biri de aşırı öğütmeyle mekanik aktivasyon işleminin uygulanmasıdır. Bu çalışmada, aşırı öğütmeye tabii tutulmuş kalkopirit konsantresinin nitrik asit (HNO3) ve potasyum dikromat (K2Cr2O7) varlığında selektif liç işlemi incelenmiştir. Bunun için öncelikle kalkopirit konsantresi paslanmaz çelik hazne ve bilyelere sahip speks tipi bir öğütücüde belirli sürelerde öğütme işlemine tabii tutulmuştur. Daha sonra elde edilen ürün, sıcaklığı ayarlanabilen küvet düzenekli çoklu bir manyetik karıştırıcı vasıtasıyla liç işlemi gerçekleştirilmiştir. Elde edilen sonuçlara göre artan liç sıcaklığı ve liç süresi ile birlikte bakır kazanımının arttığı diğer taraftan selektifliği azaltan demirin ise sınırlı oranda çözündüğü belirlenmiştir. Optimum şartlar olarak 25 dk speks öğütme süresi, 1,5 M HNO3 konsantrasyonu, 0,3 M K2Cr2O7 konsantrasyonu, 65 ℃ liç sıcaklığı, 120 dk liç süresi, 25 mL/g sıvı-katı oranı ve 400 rpm karıştırma hızında Cu ve Fe ekstraksiyon verimleri sırasıyla %98,6 ve %1,6 olarak belirlenmiştir. Diğer taraftan öğütmesiz koşullarda yapılan özdeş şartlardaki liç deneylerinde ise bakır ekstraksiyonunun %50 civarında olduğu hesaplanmıştır. Ayrıca optimum şartlardaki deneylerde seçimliliği azaltan demirin liç artığında K-Cr-jarosit olarak kaldığı tespit edilmiştir. Bunun yanı sıra demirin jarosit olarak çökmesinde ortam sıcaklığı ve çözelti pH değerinin oldukça etkin olduğu saptanmıştır.

References

  • [1] V. Flores, B. Keith, and C. Leiva, “Using artificial intelligence techniques to improve the prediction of copper recovery by leaching,” J. Sensors, vol. 2020, pp. 1–12, Feb. 2020, doi: 10.1155/2020/2454875.
  • [2] G. Calvo, G. Mudd, A. Valero, and A. Valero, “Decreasing ore grades in global metallic mining: a theoretical issue or a global reality?,” Resources, vol. 5, no. 4, p. 36, Nov. 2016, doi: 10.3390/resources5040036.
  • [3] M. D. M. Vieira, M. J. Goedkoop, P. Storm, and M. A. J. Huijbregts, “Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper,” Environ. Sci. Technol., vol. 46, no. 23, pp. 12772–12778, Dec. 2012, doi: 10.1021/es302721t.
  • [4] B.W. Chen and J.K. Wen, “Feasibility study on heap bioleaching of chalcopyrite,” Rare Met., vol. 32, no. 5, pp. 524–531, Oct. 2013, doi: 10.1007/s12598-013-0114-1.
  • [5] R. Padilla, M. Rodriguez, and M. C. Ruiz, “Sulfidation of chalcopyrite with elemental sulfur,” Metall. Mater. Trans. B, vol. 34, no. 1, pp. 15–23, Feb. 2003, doi: 10.1007/s11663-003-0050-9.
  • [6] H. R. Watling, “Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options,” Hydrometallurgy, vol. 140, pp. 163–180, Nov. 2013, doi: 10.1016/j.hydromet.2013.09.013.
  • [7] M. Dimitrijević, A. Kostov, V. Tasić, and N. Milosević, “Influence of pyrometallurgical copper production on the environment,” J. Hazard. Mater., vol. 164, no. 2–3, pp. 892–899, May 2009, doi: 10.1016/j.jhazmat.2008.08.099.
  • [8] J. Paynter, “A review of copper hydrometallurgy,” J. South. African Inst. Min. Metall., vol. 74, no. 4, pp. 158–172, 1973.
  • [9] G. Schlesinger, M. E. Davenport, W. G. Sole, G. C. Flores, Extractive Metallurgy of Copper. Elsevier, 2022.
  • [10] S. Panda, P. K. Parhi, B. D. Nayak, N. Pradhan, U. B. Mohapatra, and L. B. Sukla, “Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer,” Bioresour. Technol., vol. 130, pp. 332–338, Feb. 2013, doi: 10.1016/j.biortech.2012.12.071.
  • [11] M. D. Turan and H. S. Altundoğan, “Leaching of a copper flotation concentrate with ammonium persulfate in an autoclave system,” Int. J. Miner. Metall. Mater., vol. 21, no. 9, pp. 862–870, Sep. 2014, doi: 10.1007/s12613-014-0982-x.
  • [12] K. Tkáčová and P. Baláž, “Reactivity of mechanically activated chalcopyrite,” Int. J. Miner. Process., vol. 44–45, pp. 197–208, Mar. 1996, doi: 10.1016/0301-7516(95)00036-4.
  • [13] M. D. Turan, Z. A. Sarı, and H. Nizamoğlu, “Pressure leaching of chalcopyrite with oxalic acid and hydrogen peroxide,” J. Taiwan Inst. Chem. Eng., vol. 118, pp. 112–120, Jan. 2021, doi: 10.1016/j.jtice.2020.10.021.
  • [14] M. D. Turan, J. P. Silva, Z. A. Sarı, R. Nadirov, and N. Toro, “Dissolution of chalcopyrite in presence of chelating agent and hydrogen peroxide,” Trans. Indian Inst. Met., vol. 75, no. 1, pp. 273–280, Jan. 2022, doi: 10.1007/s12666-021-02426-z.
  • [15] M. D. Turan, Z. A. Sarı, H. Nizamoğlu and Y. Elmas, “Optimization of copper extraction from advanced milled chalcopyrite concentrate with hydrogen peroxide leaching,” J. Undergr. Resour., vol. 11, no. 6, pp. 47–51, 2017.
  • [16] M. D. Turan, M. Sarıkaya, Z. A. Sarı and A. Haxhiaj, “Investigating and optimization of copper extraction from chalcopyrite concentrate with hydrogen peroxide in presence of acetic acid,” Curr. Phys. Chem., vol. 7, no. 4, Dec. 2017, doi: 10.2174/1877946807666170808114115.
  • [17] Y. Bai, W. Wang, S. Zhao, D. Lu, F. Xie, and D. Dreisinger, “Effect of mechanical activation on leaching behavior and mechanism of chalcopyrite,” Miner. Process. Extr. Metall. Rev., vol. 43, no. 4, pp. 440–452, May 2022, doi: 10.1080/08827508.2021.1906239.
  • [18] Y. Li, B. Wang, Q. Xiao, C. Lartey, and Q. Zhang, “The mechanisms of improved chalcopyrite leaching due to mechanical activation,” Hydrometallurgy, vol. 173, pp. 149–155, Nov. 2017, doi: 10.1016/j.hydromet.2017.08.014.
  • [19] P. Hernández, M. Taboada, O. Herreros, T. Graber, and Y. Ghorbani, “Leaching of chalcopyrite in acidified nitrate using seawater-based media,” Minerals, vol. 8, no. 6, p. 238, Jun. 2018, doi: 10.3390/min8060238.
  • [20] S. Aydogan, G. Ucar, and M. Canbazoglu, “Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution,” Hydrometallurgy, vol. 81, no. 1, pp. 45–51, Jan. 2006, doi: 10.1016/j.hydromet.2005.10.003.
  • [21] G. Viramontes-Gamboa, M. M. Peña-Gomar, and D. G. Dixon, “Electrochemical hysteresis and bistability in chalcopyrite passivation,” Hydrometallurgy, vol. 105, no. 1–2, pp. 140–147, Dec. 2010, doi: 10.1016/j.hydromet.2010.08.012.
  • [22] Y. Xu, T. Jiang, M. Zhou, J. Wen, W. Chen, and X. Xue, “Effects of mechanical activation on physicochemical properties and alkaline leaching of boron concentrate,” Hydrometallurgy, vol. 173, pp. 32–42, Nov. 2017, doi: 10.1016/j.hydromet.2017.05.014.
  • [23] M. D. Turan, H. S. Altundoğan, M. Boyrazlı, Z. A. Sarı, H. Nizamoğlu, and A. Demiraslan, “Basic leaching behavior of mechanically activated zinc plant residue,” Trans. Indian Inst. Met., vol. 72, no. 9, pp. 2359–2364, Sep. 2019, doi: 10.1007/s12666-019-01687-z.
  • [24] S. Palaniandy, “Impact of mechanochemical effect on chalcopyrite leaching,” Int. J. Miner. Process., vol. 136, pp. 56–65, Mar. 2015, doi: 10.1016/j.minpro.2014.10.005.
  • [25] M. D. Sokić, B. Marković, and D. Živković, “Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid,” Hydrometallurgy, vol. 95, no. 3–4, pp. 273–279, Feb. 2009, doi: 10.1016/j.hydromet.2008.06.012.
  • [26] M. Z. Mubarok, K. Sukamto, Z. T. Ichlas, and A. T. Sugiarto, “Direct sulfuric acid leaching of zinc sulfide concentrate using ozone as oxidant under atmospheric pressure,” Miner. Metall. Process., vol. 35, no. 3, pp. 133–140, Aug. 2018, doi: 10.19150/mmp.8462.
  • [27] F. M. Doyle, “Hydrometallurgical extraction and reclamation. By E. Jackson, Ellis Horwood Limited, Halsted Press, Chichester, 1986, 266 pp.,” AIChE J., vol. 33, no. 9, pp. 1580–1580, Sep. 1987, doi: 10.1002/aic.690330923.
  • [28] M. M. Antonijević, Z. Janković, and M. Dimitrijević, “Investigation of the kinetics of chalcopyrite oxidation by potassium dichromate,” Hydrometallurgy, vol. 35, no. 2, pp. 187–201, Apr. 1994, doi: 10.1016/0304-386X(94)90051-5.
  • [29] L. E. Murr and J. B. Hiskey, “Kinetic effects of particle-size and crystal dislocation density on the dichromate leaching of chalcopyrite,” Metall. Trans. B, vol. 12, no. 2, pp. 255–267, Jun. 1981, doi: 10.1007/BF02654458.
  • [30] E. M. Córdoba, J. A. Muñoz, M. L. Blázquez, F. González, and A. Ballester, “Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential,” Hydrometallurgy, vol. 93, no. 3–4, pp. 88–96, Aug. 2008, doi: 10.1016/j.hydromet.2008.04.016.
  • [31] C. Klauber, “A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution,” Int. J. Miner. Process., vol. 86, no. 1–4, pp. 1–17, Mar. 2008, doi: 10.1016/j.minpro.2007.09.003.
  • [32] J. E. Dutrizac and T. T. Chen, “Factors affecting the precipitation of chromium(III) in jarosite-type compounds,” Metall. Mater. Trans. B, vol. 36, no. 1, pp. 33–42, Feb. 2005, doi: 10.1007/s11663-005-0003-6
  • [33] I. A. Reyes, I. Mireles, F. Patino, T. Pandiyan, M.U. Flores, E.G. Palacios, E.J. Gutierrez and M. Reyes, “A study on the dissolution rates of K-Cr(VI)-jarosites: kinetic analysis and implications,” Geochem. Trans., vol. 17, no. 1, p. 3, Dec. 2016, doi: 10.1186/s12932-016-0035-7.
  • [34] D. Baron and C. D. Palmer, “Solubility of jarosite at 4–35 °C,” Geochim. Cosmochim. Acta, vol. 60, no. 2, pp. 185–195, Jan. 1996, doi: 10.1016/0016-7037(95)00392-4.
  • [35] C. Kashkay, Y. Borovskaya, and M. Babazade, “Determination of _G°f, 298 of synthetic jarosite and its sulfate analogues,” Geochem. Intl, vol. 12, no. 3, pp. 115–121, 1975.
  • [36] Z. Lazarova, M. Lazarova, “Solvent extraction of copper from nitratemedia with chelating LIX-reagents:comparative equilibrium study,” Solvent Extr. Ion Exch., vol. 23, pp. 695–711, 2005.
  • [37] P.M. Swash, J. Monhemius, The Scorodite Process: A technology for the disposal of arsenic in the 21st Century. University of Concepción, Concepción, Chile, 1998.
Year 2024, , 653 - 661, 30.09.2024
https://doi.org/10.24012/dumf.1494580

Abstract

References

  • [1] V. Flores, B. Keith, and C. Leiva, “Using artificial intelligence techniques to improve the prediction of copper recovery by leaching,” J. Sensors, vol. 2020, pp. 1–12, Feb. 2020, doi: 10.1155/2020/2454875.
  • [2] G. Calvo, G. Mudd, A. Valero, and A. Valero, “Decreasing ore grades in global metallic mining: a theoretical issue or a global reality?,” Resources, vol. 5, no. 4, p. 36, Nov. 2016, doi: 10.3390/resources5040036.
  • [3] M. D. M. Vieira, M. J. Goedkoop, P. Storm, and M. A. J. Huijbregts, “Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper,” Environ. Sci. Technol., vol. 46, no. 23, pp. 12772–12778, Dec. 2012, doi: 10.1021/es302721t.
  • [4] B.W. Chen and J.K. Wen, “Feasibility study on heap bioleaching of chalcopyrite,” Rare Met., vol. 32, no. 5, pp. 524–531, Oct. 2013, doi: 10.1007/s12598-013-0114-1.
  • [5] R. Padilla, M. Rodriguez, and M. C. Ruiz, “Sulfidation of chalcopyrite with elemental sulfur,” Metall. Mater. Trans. B, vol. 34, no. 1, pp. 15–23, Feb. 2003, doi: 10.1007/s11663-003-0050-9.
  • [6] H. R. Watling, “Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options,” Hydrometallurgy, vol. 140, pp. 163–180, Nov. 2013, doi: 10.1016/j.hydromet.2013.09.013.
  • [7] M. Dimitrijević, A. Kostov, V. Tasić, and N. Milosević, “Influence of pyrometallurgical copper production on the environment,” J. Hazard. Mater., vol. 164, no. 2–3, pp. 892–899, May 2009, doi: 10.1016/j.jhazmat.2008.08.099.
  • [8] J. Paynter, “A review of copper hydrometallurgy,” J. South. African Inst. Min. Metall., vol. 74, no. 4, pp. 158–172, 1973.
  • [9] G. Schlesinger, M. E. Davenport, W. G. Sole, G. C. Flores, Extractive Metallurgy of Copper. Elsevier, 2022.
  • [10] S. Panda, P. K. Parhi, B. D. Nayak, N. Pradhan, U. B. Mohapatra, and L. B. Sukla, “Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer,” Bioresour. Technol., vol. 130, pp. 332–338, Feb. 2013, doi: 10.1016/j.biortech.2012.12.071.
  • [11] M. D. Turan and H. S. Altundoğan, “Leaching of a copper flotation concentrate with ammonium persulfate in an autoclave system,” Int. J. Miner. Metall. Mater., vol. 21, no. 9, pp. 862–870, Sep. 2014, doi: 10.1007/s12613-014-0982-x.
  • [12] K. Tkáčová and P. Baláž, “Reactivity of mechanically activated chalcopyrite,” Int. J. Miner. Process., vol. 44–45, pp. 197–208, Mar. 1996, doi: 10.1016/0301-7516(95)00036-4.
  • [13] M. D. Turan, Z. A. Sarı, and H. Nizamoğlu, “Pressure leaching of chalcopyrite with oxalic acid and hydrogen peroxide,” J. Taiwan Inst. Chem. Eng., vol. 118, pp. 112–120, Jan. 2021, doi: 10.1016/j.jtice.2020.10.021.
  • [14] M. D. Turan, J. P. Silva, Z. A. Sarı, R. Nadirov, and N. Toro, “Dissolution of chalcopyrite in presence of chelating agent and hydrogen peroxide,” Trans. Indian Inst. Met., vol. 75, no. 1, pp. 273–280, Jan. 2022, doi: 10.1007/s12666-021-02426-z.
  • [15] M. D. Turan, Z. A. Sarı, H. Nizamoğlu and Y. Elmas, “Optimization of copper extraction from advanced milled chalcopyrite concentrate with hydrogen peroxide leaching,” J. Undergr. Resour., vol. 11, no. 6, pp. 47–51, 2017.
  • [16] M. D. Turan, M. Sarıkaya, Z. A. Sarı and A. Haxhiaj, “Investigating and optimization of copper extraction from chalcopyrite concentrate with hydrogen peroxide in presence of acetic acid,” Curr. Phys. Chem., vol. 7, no. 4, Dec. 2017, doi: 10.2174/1877946807666170808114115.
  • [17] Y. Bai, W. Wang, S. Zhao, D. Lu, F. Xie, and D. Dreisinger, “Effect of mechanical activation on leaching behavior and mechanism of chalcopyrite,” Miner. Process. Extr. Metall. Rev., vol. 43, no. 4, pp. 440–452, May 2022, doi: 10.1080/08827508.2021.1906239.
  • [18] Y. Li, B. Wang, Q. Xiao, C. Lartey, and Q. Zhang, “The mechanisms of improved chalcopyrite leaching due to mechanical activation,” Hydrometallurgy, vol. 173, pp. 149–155, Nov. 2017, doi: 10.1016/j.hydromet.2017.08.014.
  • [19] P. Hernández, M. Taboada, O. Herreros, T. Graber, and Y. Ghorbani, “Leaching of chalcopyrite in acidified nitrate using seawater-based media,” Minerals, vol. 8, no. 6, p. 238, Jun. 2018, doi: 10.3390/min8060238.
  • [20] S. Aydogan, G. Ucar, and M. Canbazoglu, “Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution,” Hydrometallurgy, vol. 81, no. 1, pp. 45–51, Jan. 2006, doi: 10.1016/j.hydromet.2005.10.003.
  • [21] G. Viramontes-Gamboa, M. M. Peña-Gomar, and D. G. Dixon, “Electrochemical hysteresis and bistability in chalcopyrite passivation,” Hydrometallurgy, vol. 105, no. 1–2, pp. 140–147, Dec. 2010, doi: 10.1016/j.hydromet.2010.08.012.
  • [22] Y. Xu, T. Jiang, M. Zhou, J. Wen, W. Chen, and X. Xue, “Effects of mechanical activation on physicochemical properties and alkaline leaching of boron concentrate,” Hydrometallurgy, vol. 173, pp. 32–42, Nov. 2017, doi: 10.1016/j.hydromet.2017.05.014.
  • [23] M. D. Turan, H. S. Altundoğan, M. Boyrazlı, Z. A. Sarı, H. Nizamoğlu, and A. Demiraslan, “Basic leaching behavior of mechanically activated zinc plant residue,” Trans. Indian Inst. Met., vol. 72, no. 9, pp. 2359–2364, Sep. 2019, doi: 10.1007/s12666-019-01687-z.
  • [24] S. Palaniandy, “Impact of mechanochemical effect on chalcopyrite leaching,” Int. J. Miner. Process., vol. 136, pp. 56–65, Mar. 2015, doi: 10.1016/j.minpro.2014.10.005.
  • [25] M. D. Sokić, B. Marković, and D. Živković, “Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid,” Hydrometallurgy, vol. 95, no. 3–4, pp. 273–279, Feb. 2009, doi: 10.1016/j.hydromet.2008.06.012.
  • [26] M. Z. Mubarok, K. Sukamto, Z. T. Ichlas, and A. T. Sugiarto, “Direct sulfuric acid leaching of zinc sulfide concentrate using ozone as oxidant under atmospheric pressure,” Miner. Metall. Process., vol. 35, no. 3, pp. 133–140, Aug. 2018, doi: 10.19150/mmp.8462.
  • [27] F. M. Doyle, “Hydrometallurgical extraction and reclamation. By E. Jackson, Ellis Horwood Limited, Halsted Press, Chichester, 1986, 266 pp.,” AIChE J., vol. 33, no. 9, pp. 1580–1580, Sep. 1987, doi: 10.1002/aic.690330923.
  • [28] M. M. Antonijević, Z. Janković, and M. Dimitrijević, “Investigation of the kinetics of chalcopyrite oxidation by potassium dichromate,” Hydrometallurgy, vol. 35, no. 2, pp. 187–201, Apr. 1994, doi: 10.1016/0304-386X(94)90051-5.
  • [29] L. E. Murr and J. B. Hiskey, “Kinetic effects of particle-size and crystal dislocation density on the dichromate leaching of chalcopyrite,” Metall. Trans. B, vol. 12, no. 2, pp. 255–267, Jun. 1981, doi: 10.1007/BF02654458.
  • [30] E. M. Córdoba, J. A. Muñoz, M. L. Blázquez, F. González, and A. Ballester, “Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential,” Hydrometallurgy, vol. 93, no. 3–4, pp. 88–96, Aug. 2008, doi: 10.1016/j.hydromet.2008.04.016.
  • [31] C. Klauber, “A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution,” Int. J. Miner. Process., vol. 86, no. 1–4, pp. 1–17, Mar. 2008, doi: 10.1016/j.minpro.2007.09.003.
  • [32] J. E. Dutrizac and T. T. Chen, “Factors affecting the precipitation of chromium(III) in jarosite-type compounds,” Metall. Mater. Trans. B, vol. 36, no. 1, pp. 33–42, Feb. 2005, doi: 10.1007/s11663-005-0003-6
  • [33] I. A. Reyes, I. Mireles, F. Patino, T. Pandiyan, M.U. Flores, E.G. Palacios, E.J. Gutierrez and M. Reyes, “A study on the dissolution rates of K-Cr(VI)-jarosites: kinetic analysis and implications,” Geochem. Trans., vol. 17, no. 1, p. 3, Dec. 2016, doi: 10.1186/s12932-016-0035-7.
  • [34] D. Baron and C. D. Palmer, “Solubility of jarosite at 4–35 °C,” Geochim. Cosmochim. Acta, vol. 60, no. 2, pp. 185–195, Jan. 1996, doi: 10.1016/0016-7037(95)00392-4.
  • [35] C. Kashkay, Y. Borovskaya, and M. Babazade, “Determination of _G°f, 298 of synthetic jarosite and its sulfate analogues,” Geochem. Intl, vol. 12, no. 3, pp. 115–121, 1975.
  • [36] Z. Lazarova, M. Lazarova, “Solvent extraction of copper from nitratemedia with chelating LIX-reagents:comparative equilibrium study,” Solvent Extr. Ion Exch., vol. 23, pp. 695–711, 2005.
  • [37] P.M. Swash, J. Monhemius, The Scorodite Process: A technology for the disposal of arsenic in the 21st Century. University of Concepción, Concepción, Chile, 1998.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Chemical-Biological Recovery Techniques and Ore Dressing , Metalic Mines, Materials Engineering (Other)
Journal Section Articles
Authors

Zeynel Abidin Sarı 0000-0001-5932-2141

M. Deniz Turan 0000-0002-2136-1425

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date June 2, 2024
Acceptance Date July 19, 2024
Published in Issue Year 2024

Cite

IEEE Z. A. Sarı and M. D. Turan, “Aşırı öğütülmüş kalkopirit konsantresinden bakırın nitrik asit ve dikromat ortamında seçimli kazanımı”, DÜMF MD, vol. 15, no. 3, pp. 653–661, 2024, doi: 10.24012/dumf.1494580.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456