Research Article
BibTex RIS Cite

Evaluation of Pore Water Pressure Generation in Sands Containing Kaolin Clay

Year 2024, , 737 - 743, 30.09.2024
https://doi.org/10.24012/dumf.1507526

Abstract

The main aim of this study is to investigate the excess pore water pressure development of clayey sand under dynamic loads using three different models from the literature. For this purpose, stress-controlled dynamic triaxial test were performed on specimens prepared with three different kaolin clay contents (FC=5-15) to measure excess pore water pressure generation at various cyclic stress amplitude ratios. The tests were conducted under an effective confining pressure of 100 kPa. The results were used to obtain excess pore water pressure development of clayey sands under undrained dynamic conditions. Then, the results were compared with three different pore water pressure generation models to update the model coefficients for sands containing kaolin.

References

  • [1] F. Alshawmar, M. Fall, “Dynamic response of thickened tailings in shaking table testing,” Int. j. Geo-Engin, vol.12, pp. 1-25, 2021.
  • [2] J. Wang, L. Guo, Y. Cai, C. Xu, C. Gu, “Strain and pore pressure development on soft marine clay in triaxial tests with a large number of cycles,” Ocean Eng., vol.74, pp. 125-132, 2013
  • [3] T. T. Nhan, H. Matsuda, H. Sato, D. Q. Thien, P. V. Tien, N. T. T. N, “Effective stress change and cyclic resistance of saturated sands under uniform and irregular cyclic shears,” Indian Geotech J., vol.52, no. 3, pp. 507-518, 2022.Examples:
  • [4] C. S. Chang, L. C. L. Kuo, E. T. Selig, “Pore pressure development during cyclic loading,” J. Geotech. Eng., vol.109, no.1, pp. 103-107, 1983.
  • [5] R. J. Mitchell, B. I. Dubin, “Pore pressure generation and dissipation in dense sands under cyclic loading,” Can. Geotech. J., vol.23, no.3, pp. 393-398, 1986
  • [6] G. R. Martin, W. D. L. Finn, H. B. Seed, “Fundamentals of liquefaction under cyclic loading,” J. Geotech. Eng., vol.101, no.5, pp. 423-438, 1975.
  • [7] I. Ishibashi, M. A. Sherif, C. Tsuchiya, “Pore-pressure rise mechanism and soil liquefaction,” Soils Found., vol.17, no.2, pp. 17-27, 1977.
  • [8] M. A. Sherif, I. Ishibashi, C. Tsuchiya, “Pore-pressure prediction during earthquake loadings,” Soils Found., vol.18, no.4, pp. 19-30, 1978.
  • [9] S. Nemat-Nasser, A. Shokooh, “A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing,” Can. Geotech. J., vol.16, no.4, pp. 659-678, 1979.
  • [10] K. T. Law, Y. L. Cao, G. N. He, “An energy approach for assessing seismic liquefaction potential,” Can. Geotech. J., vol.27, no.3, pp. 320-329, 1990.
  • [11] J. L. Figueroa, A. S. Saada, L. Liang, N. M. Dahisaria, “Evaluation of soil liquefaction by energy principles,” J. Geotech. Eng., vol.120, no.9, pp. 1554-1569, 1994.
  • [12] H. M. Dief, J. L. Figueroa, “Liquefaction assessment by the unit energy concept through centrifuge and torsional shear tests,” Can. Geotech. J., vol.44, no.11, pp. 1286-1297, 2007.
  • [13] C. P. Polito, H. H. Moldenhauer, “Energy dissipation and pore pressure generation in stress-and strain-controlled cyclic triaxial tests,” Geotech. Test. J., vol.42, no.4, pp. 1083-1089, 2019.
  • [14] H. B. Seed, I. M. Idriss, F. Makdisi, N. Banerjee, “Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analyses,” Earthquake Engineering Research Center, University of California, Berkeley, 1975
  • [15] J. R. Booker, M. S. Rahman, H. B. Seed, “GADFLEA—A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading,” Earthquake Engineering Center, University of California, Berkeley, 1976.
  • [16] R. Dobry, W. G. Pierce, R. Dyvik, G. E. Thomas, R. S. Ladd, “Pore pressure model for cyclic straining of sand,” Civil Engineering Department, Rensselaer Polytechnic Institute, Troy, 1985.
  • [17] K. O. Cetin, H. T. Bilge, “Cyclic large strain and ınduced pore pressure models for saturated clean sands,” J. Geotech. Geoenviron., vol.138, no.3, pp. 309-323, 2012.
  • [18] R. A. Green, J. K. Mitchell, C. P. Polito, “An energy-based pore pressure generation model for cohesionless soils,” in Proc., John Booker Memorial Symp. Developments in Theoretical Geomechanics, Balkema, Rotterdam, Netherlands, Jan. 2000, pp. 383-390.
  • [19] Y. Jafarian, I. Towhata, M. H. Baziar, A. Noorzad, A. Bahmanpour, “Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments,” Soil Dyn Earthq Eng., vol.35, pp.13-28, 2012.
  • [20] M. H. Baziar, H. Shahnazari, H. Sharafi, “A laboratory study on the pore pressure generation model for Firouzkooh silty sands using hollow torsional test,” Int. J. Civ. Eng., vol.9, no.2, 126-134, 2011.
  • [21] E. Karakan, N. Tanrınian, A. Sezer, “Evaluation of excess pore water pressure build-up during cyclic triaxial tests on a non-plastic silt”, DÜBİTED, c. 6, sy. 2, ss. 513–524, 2018.
  • [22] E. Karakan, “Validation of pore water pressure model calibration parameters for non-plastic silt,” Fresenius Environ. Bull., vol.29, no.12, 10500-10510, 2020.
  • [23] H. B. Seed, P. P. Martin, J. Lysmer, “The generation and dissipation of pore water pressures during soil liquefaction,” Rep. No. EERC 75-26. Univ. of California, Berkeley, 1975.
  • [24] C. P. Polito, R. A. Green, J. Lee, “Pore pressure generation models for sands and silty soils subjected to cyclic loading,” J. Geotech. Geoenviron. Eng., vol.134, no.10, 1490–1500, 2008.
  • [25] A. Chiaradonna, G. Tropeano, A. D’onofrio, F. Silvestri, “Development of a simplified model for pore water pressure build-up induced by cyclic loading”, Bull. Earthq. Eng.,vol.16, 3627–3652, 2018.
  • [26] D. D. Porcino, V. Diano, “The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures”, Soil Dyn. Earthq. Eng., vol.10101, 311–321.
  • [27] M. S. El Hosri, H. Biarez, P. Y. Hicher, Liquefaction characteristics of silty clay. In Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, CA, USA, 21–28 July 1984; Prentice Hall: Upper Saddle River, NJ, USA, 1984; pp. 277–284.

Kaolin Kili Içeren Kumların Boşluk Suyu Basinci Oluşumunun Değerlendirilmesi

Year 2024, , 737 - 743, 30.09.2024
https://doi.org/10.24012/dumf.1507526

Abstract

Çalışmanın temel amacı, dinamik yükler altında killi kumun aşırı boşluk suyu basıncı gelişimini, literatürdeki üç farklı model kullanarak incelemektir. Bu amaçla, farklı çevrimsel gerilme genlik oranlarında aşırı boşluk suyu basıncı gelişimini elde edebilmek için üç farklı kaolin kil içeriğiyle (FC=5-15%) hazırlanan numuneler üzerinde gerilme kontrollü dinamik üç eksenli deneyler yapılmıştır. Deneyler, 100 kPa efektif çevre basıncı altında gerçekleştirilmiştir. Sonuçlar, drenajsız dinamik koşullar altında killi kumların aşırı boşluk suyu basıncı gelişimini elde etmek için kullanılmıştır. Ardından, elde edilen veriler, kaolin içeren kumlar için model katsayılarını güncellemek amacıyla üç farklı boşluk suyu basıncı üretim modeli ile karşılaştırılmıştır.

References

  • [1] F. Alshawmar, M. Fall, “Dynamic response of thickened tailings in shaking table testing,” Int. j. Geo-Engin, vol.12, pp. 1-25, 2021.
  • [2] J. Wang, L. Guo, Y. Cai, C. Xu, C. Gu, “Strain and pore pressure development on soft marine clay in triaxial tests with a large number of cycles,” Ocean Eng., vol.74, pp. 125-132, 2013
  • [3] T. T. Nhan, H. Matsuda, H. Sato, D. Q. Thien, P. V. Tien, N. T. T. N, “Effective stress change and cyclic resistance of saturated sands under uniform and irregular cyclic shears,” Indian Geotech J., vol.52, no. 3, pp. 507-518, 2022.Examples:
  • [4] C. S. Chang, L. C. L. Kuo, E. T. Selig, “Pore pressure development during cyclic loading,” J. Geotech. Eng., vol.109, no.1, pp. 103-107, 1983.
  • [5] R. J. Mitchell, B. I. Dubin, “Pore pressure generation and dissipation in dense sands under cyclic loading,” Can. Geotech. J., vol.23, no.3, pp. 393-398, 1986
  • [6] G. R. Martin, W. D. L. Finn, H. B. Seed, “Fundamentals of liquefaction under cyclic loading,” J. Geotech. Eng., vol.101, no.5, pp. 423-438, 1975.
  • [7] I. Ishibashi, M. A. Sherif, C. Tsuchiya, “Pore-pressure rise mechanism and soil liquefaction,” Soils Found., vol.17, no.2, pp. 17-27, 1977.
  • [8] M. A. Sherif, I. Ishibashi, C. Tsuchiya, “Pore-pressure prediction during earthquake loadings,” Soils Found., vol.18, no.4, pp. 19-30, 1978.
  • [9] S. Nemat-Nasser, A. Shokooh, “A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing,” Can. Geotech. J., vol.16, no.4, pp. 659-678, 1979.
  • [10] K. T. Law, Y. L. Cao, G. N. He, “An energy approach for assessing seismic liquefaction potential,” Can. Geotech. J., vol.27, no.3, pp. 320-329, 1990.
  • [11] J. L. Figueroa, A. S. Saada, L. Liang, N. M. Dahisaria, “Evaluation of soil liquefaction by energy principles,” J. Geotech. Eng., vol.120, no.9, pp. 1554-1569, 1994.
  • [12] H. M. Dief, J. L. Figueroa, “Liquefaction assessment by the unit energy concept through centrifuge and torsional shear tests,” Can. Geotech. J., vol.44, no.11, pp. 1286-1297, 2007.
  • [13] C. P. Polito, H. H. Moldenhauer, “Energy dissipation and pore pressure generation in stress-and strain-controlled cyclic triaxial tests,” Geotech. Test. J., vol.42, no.4, pp. 1083-1089, 2019.
  • [14] H. B. Seed, I. M. Idriss, F. Makdisi, N. Banerjee, “Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analyses,” Earthquake Engineering Research Center, University of California, Berkeley, 1975
  • [15] J. R. Booker, M. S. Rahman, H. B. Seed, “GADFLEA—A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading,” Earthquake Engineering Center, University of California, Berkeley, 1976.
  • [16] R. Dobry, W. G. Pierce, R. Dyvik, G. E. Thomas, R. S. Ladd, “Pore pressure model for cyclic straining of sand,” Civil Engineering Department, Rensselaer Polytechnic Institute, Troy, 1985.
  • [17] K. O. Cetin, H. T. Bilge, “Cyclic large strain and ınduced pore pressure models for saturated clean sands,” J. Geotech. Geoenviron., vol.138, no.3, pp. 309-323, 2012.
  • [18] R. A. Green, J. K. Mitchell, C. P. Polito, “An energy-based pore pressure generation model for cohesionless soils,” in Proc., John Booker Memorial Symp. Developments in Theoretical Geomechanics, Balkema, Rotterdam, Netherlands, Jan. 2000, pp. 383-390.
  • [19] Y. Jafarian, I. Towhata, M. H. Baziar, A. Noorzad, A. Bahmanpour, “Strain energy based evaluation of liquefaction and residual pore water pressure in sands using cyclic torsional shear experiments,” Soil Dyn Earthq Eng., vol.35, pp.13-28, 2012.
  • [20] M. H. Baziar, H. Shahnazari, H. Sharafi, “A laboratory study on the pore pressure generation model for Firouzkooh silty sands using hollow torsional test,” Int. J. Civ. Eng., vol.9, no.2, 126-134, 2011.
  • [21] E. Karakan, N. Tanrınian, A. Sezer, “Evaluation of excess pore water pressure build-up during cyclic triaxial tests on a non-plastic silt”, DÜBİTED, c. 6, sy. 2, ss. 513–524, 2018.
  • [22] E. Karakan, “Validation of pore water pressure model calibration parameters for non-plastic silt,” Fresenius Environ. Bull., vol.29, no.12, 10500-10510, 2020.
  • [23] H. B. Seed, P. P. Martin, J. Lysmer, “The generation and dissipation of pore water pressures during soil liquefaction,” Rep. No. EERC 75-26. Univ. of California, Berkeley, 1975.
  • [24] C. P. Polito, R. A. Green, J. Lee, “Pore pressure generation models for sands and silty soils subjected to cyclic loading,” J. Geotech. Geoenviron. Eng., vol.134, no.10, 1490–1500, 2008.
  • [25] A. Chiaradonna, G. Tropeano, A. D’onofrio, F. Silvestri, “Development of a simplified model for pore water pressure build-up induced by cyclic loading”, Bull. Earthq. Eng.,vol.16, 3627–3652, 2018.
  • [26] D. D. Porcino, V. Diano, “The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures”, Soil Dyn. Earthq. Eng., vol.10101, 311–321.
  • [27] M. S. El Hosri, H. Biarez, P. Y. Hicher, Liquefaction characteristics of silty clay. In Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, CA, USA, 21–28 July 1984; Prentice Hall: Upper Saddle River, NJ, USA, 1984; pp. 277–284.
There are 27 citations in total.

Details

Primary Language English
Subjects Earthquake Engineering, Civil Geotechnical Engineering
Journal Section Articles
Authors

İrem Bozyiğit 0000-0001-7189-8098

Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date June 30, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024

Cite

IEEE İ. Bozyiğit, “Evaluation of Pore Water Pressure Generation in Sands Containing Kaolin Clay”, DÜMF MD, vol. 15, no. 3, pp. 737–743, 2024, doi: 10.24012/dumf.1507526.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456