Research Article
BibTex RIS Cite

Year 2025, Volume: 16 Issue: 4, 1015 - 1031, 30.12.2025
https://doi.org/10.24012/dumf.1756471

Abstract

References

  • İ. Dinçer and C. Acar, “Review and evaluation of hydrogen production methods for better sustainability,” International Journal of Hydrogen Energy, vol. 40, no. 34, p. 11094, Jan. 2015, doi: 10.1016/j.ijhydene.2014.12.035.
  • [2] M. Ball and M. Weeda, “The hydrogen economy – Vision or reality?,” International Journal of Hydrogen Energy, vol. 40, no. 25, p. 7903, May 2015, doi: 10.1016/j.ijhydene.2015.04.032.
  • [3] M. Lototskyy, V. A. Yartys, B. G. Pollet, and R. C. Bowman, “Metal hydride hydrogen compressors: A review,” International Journal of Hydrogen Energy, vol. 39, no. 11, p. 5818, Feb. 2014, doi: 10.1016/j.ijhydene.2014.01.158.
  • [4] L. Schlapbach and A. Züttel, “Hydrogen-storage materials for mobile applications,” Nature, vol. 414, no. 6861, p. 353, Nov. 2001, doi: 10.1038/35104634.
  • [5] A. Züttel, “Hydrogen storage methods,” The Science of Nature, vol. 91, no. 4, p. 157, Apr. 2004, doi: 10.1007/s00114-004-0516-x.
  • [6] B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” International Journal of Hydrogen Energy, vol. 32, no. 9, p. 1121, Jan. 2007, doi: 10.1016/j.ijhydene.2006.11.022.
  • [7] I. P. Jain, C. Lal, and A. Jain, “Hydrogen storage in Mg: A most promising material,” International Journal of Hydrogen Energy, vol. 35, no. 10, p. 5133, Oct. 2009, doi: 10.1016/j.ijhydene.2009.08.088.
  • [8] R. Paramonov, T. Spassov, P. Nagy, and Á. Révész, “Synergetic Effect of FeTi in Enhancing the Hydrogen-Storage Kinetics of Nanocrystalline MgH2,” Energies, vol. 17, no. 4, p. 794, Feb. 2024, doi: 10.3390/en17040794.
  • [9] A. K. Patel et al., “Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives,” Processes, vol. 9, no. 7, p. 1217, Jul. 2021, doi: 10.3390/pr9071217.
  • [10] L. Ren et al., “Nanostructuring of Mg-Based Hydrogen Storage Materials: Recent Advances for Promoting Key Applications,” Nano-Micro Letters, vol. 15, no. 1, Apr. 2023, doi: 10.1007/s40820-023-01041-5.
  • [11] A. Mohammadi et al., “High-entropy hydrides for fast and reversible hydrogen storage at room temperature,” Acta Materialia, vol. 236, p. 118117, Jun. 2022, doi: 10.1016/j.actamat.2022.118117.
  • [12] S. Dangwal and K. Edalati, “High-entropy alloy TiV2ZrCrMnFeNi for hydrogen storage at room temperature,” Scripta Materialia, vol. 238, p. 115774, Sep. 2023, doi: 10.1016/j.scriptamat.2023.115774.
  • [13] Y. Kozhakhmetov et al., “High-Entropy Alloys: Innovative Materials with Unique Properties for Hydrogen Storage,” Metals, vol. 15, no. 2, p. 100, Jan. 2025, doi: 10.3390/met15020100.
  • [14] V. K. Kukkapalli, S. Kim, and S. A. Thomas, “Thermal Management Techniques in Metal Hydrides for Hydrogen Storage Applications: A Review,” Energies, vol. 16, no. 8, p. 3444, Apr. 2023, doi: 10.3390/en16083444.
  • [15] G. Miao et al., “Review of thermal management technology for metal hydride reaction beds,” Sustainable Energy & Fuels, vol. 7, no. 9, p. 2025, 2023, doi: 10.1039/d2se01690g.
  • [16] P. Larpruenrudee et al., “The enhancement of metal hydride hydrogen storage performance using novel triple-branched fin,” Journal of Energy Storage, vol. 123, p. 116659, Apr. 2025, doi: 10.1016/j.est.2025.116659.
  • [17] R. Ran, J. Wang, F. Yang, and R. Imin, “Fast Design and Numerical Simulation of a Metal Hydride Reactor,” Energies, vol. 17, no. 3, p. 712, Feb. 2024, doi: 10.3390/en17030712.
  • [18] V. N. Kudiiarov, R. R. Elman, N. S. Pushilina, and N. Kurdyumov, “State of the Art in Development of Heat Exchanger Geometry Optimization,” Materials, vol. 16, no. 13, p. 4891, Jul. 2023, doi: 10.3390/ma16134891.
  • [19] S. Jana and P. Muthukumar, “Design, development and hydrogen storage performance testing of a tube bundle metal hydride reactor,” Journal of Energy Storage, vol. 63, p. 106936, Mar. 2023, doi: 10.1016/j.est.2023.106936.
  • [20] G. Mohan, M. P. Maiya, and S. Srinivasamurthy, “Performance simulation of metal hydride hydrogen storage device,” International Journal of Hydrogen Energy, vol. 32, no. 18, p. 4978, Oct. 2007, doi: 10.1016/j.ijhydene.2007.08.007.
  • [21] S. Parashar, P. Muthukumar, and A. K. Soti, “Experimental study on absorption and desorption behavior of a novel metal hydride reactor,” International Journal of Hydrogen Energy, vol. 94, p. 1224, Nov. 2024, doi: 10.1016/j.ijhydene.2024.11.058.
  • [22] M. Raju and S. Kumar, “Optimization of heat exchanger designs in metal hydride based hydrogen storage systems,” International Journal of Hydrogen Energy, vol. 37, no. 3, p. 2767, Aug. 2011, doi: 10.1016/j.ijhydene.2011.06.120.
  • [23] X.-S. Bai et al., “Optimization of tree-shaped fin structures towards enhanced absorption performance,” Energy, vol. 220, p. 119738, Dec. 2020, doi: 10.1016/j.energy.2020.119738.
  • [24] Y. Liu et al., “Numerical investigation of metal hydride heat storage reactor with multiple tubes,” Energy, vol. 253, p. 124142, May 2022, doi: 10.1016/j.energy.2022.124142.
  • [25] V. Pandey, K. V. Krishna, and M. P. Maiya, “Numerical modelling and heat transfer optimization of large-scale reactors,” International Journal of Hydrogen Energy, vol. 48, no. 42, p. 16020, Jan. 2023, doi: 10.1016/j.ijhydene.2023.01.058.
  • [26] S. Shafiee, “Operational principles and effect of operating parameters on performance of metal hydride heat pumps,” International Journal of Refrigeration, vol. 120, p. 22, Aug. 2020, doi: 10.1016/j.ijrefrig.2020.08.025.
  • [27] S. N. Nyamsi and I. Tolj, “The Impact of Active and Passive Thermal Management,” Energies, vol. 14, no. 11, p. 3006, May 2021, doi: 10.3390/en14113006.
  • [28] I. Dincer and M. A. Rosen, Exergy: energy, environment and sustainable development. Newnes, 2012. Available: http://ci.nii.ac.jp/ncid/BA8326393X
  • [29] Y. A. Cengel and M. A. Boles, Thermodynamics: An engineering approach, 8th ed. McGraw-Hill Education, 2015.
  • [30] V. Bahrs, F. Franke, S. Kazula, and S. de Graaf, “Analysis of the potential of metal hydride-based range extenders,” CEAS Aeronautical Journal, Dec. 2024, doi: 10.1007/s13272-024-00784-0.
  • [31] T. L. Bergman, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011. [Online]. Available: https://ci.nii.ac.jp/ncid/BB01294600
  • [32] B. Galey et al., “Improved hydrogen storage properties of Mg/MgH2,” International Journal of Hydrogen Energy, vol. 44, no. 54, p. 28848, Oct. 2019, doi: 10.1016/j.ijhydene.2019.09.127.
  • [33] Y. A. Cengel and J. M. Cimbala, Fluid mechanics: Fundamentals and applications, 3rd ed. McGraw-Hill Education, 2014.
  • [34] A. Bejan, Advanced engineering thermodynamics, 4th ed. John Wiley & Sons, 2016, doi: 10.1002/9781119245964.
  • [35] S. Parashar, P. Muthukumar, and A. K. Soti, “Design optimization and numerical investigation,” Thermal Science and Engineering Progress, vol. 49, p. 102468, Feb. 2024, doi: 10.1016/j.tsep.2024.102468.
  • [36] A. H. Eisapour et al., “Enhancing hydrogen storage efficiency,” International Journal of Hydrogen Energy, vol. 109, p. 1090, Feb. 2025, doi: 10.1016/j.ijhydene.2025.02.146.
  • [37] F. Askri et al., “Numerical investigation of high temperature metal hydride water pumping system,” International Journal of Hydrogen Energy, vol. 44, no. 31, p. 16777, May 2019, doi: 10.1016/j.ijhydene.2019.04.263.
  • [38] T. Alqahtani, S. Mellouli, F. Askri, S. Algarni, B. M. Alshammari, and L. Kolsi, “Numerical Investigation on Thermal Performance of Three Configurations of Solar Thermal Collector Integrated with Metal Hydride,” Case Studies in Thermal Engineering, p. 105314, Oct. 2024, doi: 10.1016/j.csite.2024.105314.
  • [39] I. Ayub et al., “Performance improvement of solar bakery unit,” Renewable Energy, vol. 161, p. 1011, Aug. 2020, doi: 10.1016/j.renene.2020.07.133.
  • [40] P. Krane et al., “Dynamic modeling and control of a two-reactor metal hydride energy storage system,” Applied Energy, vol. 325, p. 119836, Sep. 2022, doi: 10.1016/j.apenergy.2022.119836.
  • [41] P. Krane et al., “Assessment of metal-hydride energy storage coupled with heat pumps and solar PV,” Purdue Univ., 2021. [Online]. Available: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1372&context=ihpbc.
  • [42] T. Alqahtani et al., “Numerical Investigation on Thermal Performance of Solar Collector with Metal Hydride,” Case Studies in Thermal Engineering, p. 105314, Oct. 2024, doi: 10.1016/j.csite.2024.105314.

Energy and Exergy Analysis of a Metal Hydride-Based Hydrogen Storage System: A Parametric Approach

Year 2025, Volume: 16 Issue: 4, 1015 - 1031, 30.12.2025
https://doi.org/10.24012/dumf.1756471

Abstract

Hydrogen is considered a promising energy carrier for the global energy transition due to its high energy density and environmental sustainability. However, the efficient storage of hydrogen remains a major technical challenge that limits its large-scale deployment. Metal hydrides (MHs) offer a safe and compact solution, but their thermal management strongly influences storage efficiency.This study conducts a comprehensive energy and exergy analysis of a magnesium hydride (MgH₂)-based storage system to evaluate the combined influence of key parameters: reactor number, outlet temperature, coolant mass flow rate, pump efficiency, ambient temperature, heat transfer coefficient, hydrogen capacity, and the volume-to-surface (V/A) ratio. The numerical model integrates energy–exergy formulations to quantify performance under different operating conditions.The results reveal that increasing the number of reactors enhances exergy efficiency from 21.5% to 64.9%, while higher outlet temperatures and mass flow rates reduce efficiency due to thermal imbalance and pumping losses. In contrast, improving the heat transfer coefficient up to 3000 W/m²·K increases efficiency to 73.9%, demonstrating the critical role of thermal design.These findings provide design guidelines for optimizing reactor configuration, flow management, and material selection. The study offers practical insights for engineering applications and supports the development of scalable, high-efficiency MH-based hydrogen storage systems.

References

  • İ. Dinçer and C. Acar, “Review and evaluation of hydrogen production methods for better sustainability,” International Journal of Hydrogen Energy, vol. 40, no. 34, p. 11094, Jan. 2015, doi: 10.1016/j.ijhydene.2014.12.035.
  • [2] M. Ball and M. Weeda, “The hydrogen economy – Vision or reality?,” International Journal of Hydrogen Energy, vol. 40, no. 25, p. 7903, May 2015, doi: 10.1016/j.ijhydene.2015.04.032.
  • [3] M. Lototskyy, V. A. Yartys, B. G. Pollet, and R. C. Bowman, “Metal hydride hydrogen compressors: A review,” International Journal of Hydrogen Energy, vol. 39, no. 11, p. 5818, Feb. 2014, doi: 10.1016/j.ijhydene.2014.01.158.
  • [4] L. Schlapbach and A. Züttel, “Hydrogen-storage materials for mobile applications,” Nature, vol. 414, no. 6861, p. 353, Nov. 2001, doi: 10.1038/35104634.
  • [5] A. Züttel, “Hydrogen storage methods,” The Science of Nature, vol. 91, no. 4, p. 157, Apr. 2004, doi: 10.1007/s00114-004-0516-x.
  • [6] B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” International Journal of Hydrogen Energy, vol. 32, no. 9, p. 1121, Jan. 2007, doi: 10.1016/j.ijhydene.2006.11.022.
  • [7] I. P. Jain, C. Lal, and A. Jain, “Hydrogen storage in Mg: A most promising material,” International Journal of Hydrogen Energy, vol. 35, no. 10, p. 5133, Oct. 2009, doi: 10.1016/j.ijhydene.2009.08.088.
  • [8] R. Paramonov, T. Spassov, P. Nagy, and Á. Révész, “Synergetic Effect of FeTi in Enhancing the Hydrogen-Storage Kinetics of Nanocrystalline MgH2,” Energies, vol. 17, no. 4, p. 794, Feb. 2024, doi: 10.3390/en17040794.
  • [9] A. K. Patel et al., “Study of the Microstructural and First Hydrogenation Properties of TiFe Alloy with Zr, Mn and V as Additives,” Processes, vol. 9, no. 7, p. 1217, Jul. 2021, doi: 10.3390/pr9071217.
  • [10] L. Ren et al., “Nanostructuring of Mg-Based Hydrogen Storage Materials: Recent Advances for Promoting Key Applications,” Nano-Micro Letters, vol. 15, no. 1, Apr. 2023, doi: 10.1007/s40820-023-01041-5.
  • [11] A. Mohammadi et al., “High-entropy hydrides for fast and reversible hydrogen storage at room temperature,” Acta Materialia, vol. 236, p. 118117, Jun. 2022, doi: 10.1016/j.actamat.2022.118117.
  • [12] S. Dangwal and K. Edalati, “High-entropy alloy TiV2ZrCrMnFeNi for hydrogen storage at room temperature,” Scripta Materialia, vol. 238, p. 115774, Sep. 2023, doi: 10.1016/j.scriptamat.2023.115774.
  • [13] Y. Kozhakhmetov et al., “High-Entropy Alloys: Innovative Materials with Unique Properties for Hydrogen Storage,” Metals, vol. 15, no. 2, p. 100, Jan. 2025, doi: 10.3390/met15020100.
  • [14] V. K. Kukkapalli, S. Kim, and S. A. Thomas, “Thermal Management Techniques in Metal Hydrides for Hydrogen Storage Applications: A Review,” Energies, vol. 16, no. 8, p. 3444, Apr. 2023, doi: 10.3390/en16083444.
  • [15] G. Miao et al., “Review of thermal management technology for metal hydride reaction beds,” Sustainable Energy & Fuels, vol. 7, no. 9, p. 2025, 2023, doi: 10.1039/d2se01690g.
  • [16] P. Larpruenrudee et al., “The enhancement of metal hydride hydrogen storage performance using novel triple-branched fin,” Journal of Energy Storage, vol. 123, p. 116659, Apr. 2025, doi: 10.1016/j.est.2025.116659.
  • [17] R. Ran, J. Wang, F. Yang, and R. Imin, “Fast Design and Numerical Simulation of a Metal Hydride Reactor,” Energies, vol. 17, no. 3, p. 712, Feb. 2024, doi: 10.3390/en17030712.
  • [18] V. N. Kudiiarov, R. R. Elman, N. S. Pushilina, and N. Kurdyumov, “State of the Art in Development of Heat Exchanger Geometry Optimization,” Materials, vol. 16, no. 13, p. 4891, Jul. 2023, doi: 10.3390/ma16134891.
  • [19] S. Jana and P. Muthukumar, “Design, development and hydrogen storage performance testing of a tube bundle metal hydride reactor,” Journal of Energy Storage, vol. 63, p. 106936, Mar. 2023, doi: 10.1016/j.est.2023.106936.
  • [20] G. Mohan, M. P. Maiya, and S. Srinivasamurthy, “Performance simulation of metal hydride hydrogen storage device,” International Journal of Hydrogen Energy, vol. 32, no. 18, p. 4978, Oct. 2007, doi: 10.1016/j.ijhydene.2007.08.007.
  • [21] S. Parashar, P. Muthukumar, and A. K. Soti, “Experimental study on absorption and desorption behavior of a novel metal hydride reactor,” International Journal of Hydrogen Energy, vol. 94, p. 1224, Nov. 2024, doi: 10.1016/j.ijhydene.2024.11.058.
  • [22] M. Raju and S. Kumar, “Optimization of heat exchanger designs in metal hydride based hydrogen storage systems,” International Journal of Hydrogen Energy, vol. 37, no. 3, p. 2767, Aug. 2011, doi: 10.1016/j.ijhydene.2011.06.120.
  • [23] X.-S. Bai et al., “Optimization of tree-shaped fin structures towards enhanced absorption performance,” Energy, vol. 220, p. 119738, Dec. 2020, doi: 10.1016/j.energy.2020.119738.
  • [24] Y. Liu et al., “Numerical investigation of metal hydride heat storage reactor with multiple tubes,” Energy, vol. 253, p. 124142, May 2022, doi: 10.1016/j.energy.2022.124142.
  • [25] V. Pandey, K. V. Krishna, and M. P. Maiya, “Numerical modelling and heat transfer optimization of large-scale reactors,” International Journal of Hydrogen Energy, vol. 48, no. 42, p. 16020, Jan. 2023, doi: 10.1016/j.ijhydene.2023.01.058.
  • [26] S. Shafiee, “Operational principles and effect of operating parameters on performance of metal hydride heat pumps,” International Journal of Refrigeration, vol. 120, p. 22, Aug. 2020, doi: 10.1016/j.ijrefrig.2020.08.025.
  • [27] S. N. Nyamsi and I. Tolj, “The Impact of Active and Passive Thermal Management,” Energies, vol. 14, no. 11, p. 3006, May 2021, doi: 10.3390/en14113006.
  • [28] I. Dincer and M. A. Rosen, Exergy: energy, environment and sustainable development. Newnes, 2012. Available: http://ci.nii.ac.jp/ncid/BA8326393X
  • [29] Y. A. Cengel and M. A. Boles, Thermodynamics: An engineering approach, 8th ed. McGraw-Hill Education, 2015.
  • [30] V. Bahrs, F. Franke, S. Kazula, and S. de Graaf, “Analysis of the potential of metal hydride-based range extenders,” CEAS Aeronautical Journal, Dec. 2024, doi: 10.1007/s13272-024-00784-0.
  • [31] T. L. Bergman, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011. [Online]. Available: https://ci.nii.ac.jp/ncid/BB01294600
  • [32] B. Galey et al., “Improved hydrogen storage properties of Mg/MgH2,” International Journal of Hydrogen Energy, vol. 44, no. 54, p. 28848, Oct. 2019, doi: 10.1016/j.ijhydene.2019.09.127.
  • [33] Y. A. Cengel and J. M. Cimbala, Fluid mechanics: Fundamentals and applications, 3rd ed. McGraw-Hill Education, 2014.
  • [34] A. Bejan, Advanced engineering thermodynamics, 4th ed. John Wiley & Sons, 2016, doi: 10.1002/9781119245964.
  • [35] S. Parashar, P. Muthukumar, and A. K. Soti, “Design optimization and numerical investigation,” Thermal Science and Engineering Progress, vol. 49, p. 102468, Feb. 2024, doi: 10.1016/j.tsep.2024.102468.
  • [36] A. H. Eisapour et al., “Enhancing hydrogen storage efficiency,” International Journal of Hydrogen Energy, vol. 109, p. 1090, Feb. 2025, doi: 10.1016/j.ijhydene.2025.02.146.
  • [37] F. Askri et al., “Numerical investigation of high temperature metal hydride water pumping system,” International Journal of Hydrogen Energy, vol. 44, no. 31, p. 16777, May 2019, doi: 10.1016/j.ijhydene.2019.04.263.
  • [38] T. Alqahtani, S. Mellouli, F. Askri, S. Algarni, B. M. Alshammari, and L. Kolsi, “Numerical Investigation on Thermal Performance of Three Configurations of Solar Thermal Collector Integrated with Metal Hydride,” Case Studies in Thermal Engineering, p. 105314, Oct. 2024, doi: 10.1016/j.csite.2024.105314.
  • [39] I. Ayub et al., “Performance improvement of solar bakery unit,” Renewable Energy, vol. 161, p. 1011, Aug. 2020, doi: 10.1016/j.renene.2020.07.133.
  • [40] P. Krane et al., “Dynamic modeling and control of a two-reactor metal hydride energy storage system,” Applied Energy, vol. 325, p. 119836, Sep. 2022, doi: 10.1016/j.apenergy.2022.119836.
  • [41] P. Krane et al., “Assessment of metal-hydride energy storage coupled with heat pumps and solar PV,” Purdue Univ., 2021. [Online]. Available: https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1372&context=ihpbc.
  • [42] T. Alqahtani et al., “Numerical Investigation on Thermal Performance of Solar Collector with Metal Hydride,” Case Studies in Thermal Engineering, p. 105314, Oct. 2024, doi: 10.1016/j.csite.2024.105314.
There are 42 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Nesin İlgin Beyazit 0000-0003-4708-9615

Submission Date August 1, 2025
Acceptance Date November 19, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 16 Issue: 4

Cite

IEEE N. İlgin Beyazit, “Energy and Exergy Analysis of a Metal Hydride-Based Hydrogen Storage System: A Parametric Approach”, DUJE, vol. 16, no. 4, pp. 1015–1031, 2025, doi: 10.24012/dumf.1756471.