Uçucu kül ve silis dumanı ikameli üçlü karışımlardan üretilen kendiliğinden yerleşen harçların durabilite ve dayanım özellikleri
Year 2019,
, 335 - 345, 15.03.2019
Ahmet Benli
,
Mehmet Karataş
Abstract
Bu
deneysel çalışmada, uçucu kül (UK) ve silis dumanın (SD) 'dan üretilen kendiliğinden yerleşen harçların (KYH) dayanım
ve durabilite özelliklerinin incelenmesi amaçlanmıştır.. KYH 'lar, Portland
çimentosu(PÇ) yerine ağırlıkça %6, %10 ve %14 oranlarında SD ile birlikte 10%
UK, ağırlıkça %6 ve %10 oranlarında SD ile 20%UK ikame edilerek mineral katkılı
ve kontrol numunesiyle birlikte 6 adet karışımla numuneler hazırlanmıştır. Toplam
bağlayıcı miktarı 630 kg/m3 olan 6 farklı karışımla üretilen KYH’ ın
taze ve sertleştirilmiş koşullarda davranışı yapılan deneylerle
araştırılmıştır. Karışımların Su/bağlayıcı
(s/b) oranı 0.39 ila 0.44 arasında kalması sağlanmıştır. UK ve SD ikameli üçlü
karışımlardan üretilen KYH'ların taze özelliklerini ölçmek için slump çapı ve
V-huni akış hızı süresi tespit eden testler yapılmıştır. KYH’lardan üretilen
sertleşmiş numunelerin basınç ve çekme dayanımlarını için 40x40x160 mm
boyutunda numuneler 28 ve 90 günlük suda kür edilmiş ve test edilmiştir.
Durabilite özelliklerini araştırmak amacıyla 50 mm boyutunda küp numuneler
üretilmiş ve 28 gün suda bekletildikten sonra toplam su emme, porozite ve
yoğunluk değerleri tespit edilmiştir. Deneyler sonucunda UK10SD6 den üretilmiş üçlü
karışımlarının en iyi basınç ve eğilme dayanımı gösterdiği gözlemlenmiştir.
References
- Aprianti, E., Shafigh, P., Zawawi, R., Abu Hassan, Z. F., (2016). Introducing an effective curing method for mortar containing high volume cementitious materials. Constr Build Mater, 107, 365-377.
- ASTM C109 / C109M - 16a,(2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.
- ASTM C642 – 13,(2013). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete
Benli, A., Karatas, M., ( 2017). Durability and Strength Properties Self-Compacting Mortars with High-Calcium Fly Ash and Silica Fume. Karaelmas Fen ve Mühendislik Dergisi, 7(2), 647-657.
- Benli, A., Karatas, M., Bakir, Y., (2017). "An experimental study of different curing regimes on the mechanical properties and sorptivity of self-compacting mortars with fly ash and silica fume." Construction and Building Materials, 144, 552-562.
- Chen, X., Wu, S., Zhou, J., (2013). Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater, 40, 869-874.
- Domone, P. L. J., Jin, J., (1999). Properties of mortar for self-compacting concrete. Rilem Proc, 7, 109-120.
- EFNARC (2005). (European Federation of Specialist Construction Chemicals and Concrete Systems). The European guidelines for selfcompacting concrete: Specification, production and use, U.K.
- Ghrici, M., Kenai, S., Said-Mansour, M., (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement and Concrete Composites, 29(7), 542-549.
- Karatas, M., Benli, A., Ergin, A., (2017). Influence of ground pumice powder on the mechanical properties and durability of self-compacting mortars. Constr Build Mater, 150, 467-479.
- Leung, H. Y., Kim, J., Nadeem, A., Jaganathan, J., Anwar, M. P., (2016). Sorptivity of self-compacting concrete containing fly ash and silica fume. Construction and Building Materials, 113, 369-375.
- Li, L. G., Ng, P.-L., Huang, Z.-H., Zhu, J., Kwan, A. K.-H., (2017). Effects of Micro-silica and Nano-silica on Fresh Properties of Mortar. Materials Science, 23(4).
- Mardani-Aghabaglou, A., İnan Sezer, G., Ramyar, K., (2014)., Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point. Constr Build Mater, 70, 17-25.
- Mohamed, O. A., Najm, O. F., (2017). Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS. Frontiers of Structural and Civil Engineering, 11(4), 406-411.
- Poon, C. S., Wong, Y. L., Lam, L., (1997). The influence of different curing conditions on the pore structure and related properties of fly-ash cement pastes and mortars. Construction and Building Materials, 11(7-8), 383-393.
- Rao, S., Silva, P., de Brito, J., (2015). "Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2)." Constr Build Mater, 96, 508-517.
- Sabet, F. A., Libre, N. A., Shekarchi, M., (2013). Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Constr Build Mater, 44, 175-184.
- Sadrmomtazi, A., Tahmouresi, B., Saradar, A., (2018). Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr Build Mater, 162, 321-333.
- Sahmaran, M., Christianto, H. A., Yaman, I. O., (2006). The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cement Concrete Comp, 28(5), 432-440.
- Siddique, R., (2013). Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of self-compacting concrete containing coal bottom ash. Construction and Building Materials, 47, 1444-1450.
- Sonebi, M., (2004). Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans. Cement and Concrete Research, 34(7), 1199-1208.
- Wang, D., Shi, C., Wu, Z., Wu, L., Xiang, S., Pan, X., (2016). Effects of nanomaterials on hardening of cement–silica fume–fly ash-based ultra-high-strength concrete. Advances in Cement Research, 28(9), 555-566.
- Wongkeo, W., Chaipanich, A., (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Mat Sci Eng a-Struct, 527(16-17), 3676-3684.
- Wongkeo, W., Thongsanitgarn, P., Chaipanich, A., (2012). Compressive Strength of Binary and Ternary Blended Cement Mortars Containing Fly Ash and Silica Fume Under Autoclaved Curing. Materials for Environmental Protection and Energy Application, Pts 1 and 2, 343-344, 316-321.
- Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials & Design, 64, 261-269.
- Yahia, A., Tanimura, M., Shimabukuro, A., Shimoyama, Y., (1999). Effect of rheological parameters on self-compactability of concrete containing various mineral admixtures. Rilem Proc, 7, 523-535.
- Zhao, Z. G., Qu, X. L., Li, F. X., Wei, J. X., (2018). Effects of steel slag and silica fume additions on compressive strength and thermal properties of lime-fly ash pastes. Construction and Building Materials, 183, 439-450.
Year 2019,
, 335 - 345, 15.03.2019
Ahmet Benli
,
Mehmet Karataş
References
- Aprianti, E., Shafigh, P., Zawawi, R., Abu Hassan, Z. F., (2016). Introducing an effective curing method for mortar containing high volume cementitious materials. Constr Build Mater, 107, 365-377.
- ASTM C109 / C109M - 16a,(2016). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars.
- ASTM C642 – 13,(2013). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete
Benli, A., Karatas, M., ( 2017). Durability and Strength Properties Self-Compacting Mortars with High-Calcium Fly Ash and Silica Fume. Karaelmas Fen ve Mühendislik Dergisi, 7(2), 647-657.
- Benli, A., Karatas, M., Bakir, Y., (2017). "An experimental study of different curing regimes on the mechanical properties and sorptivity of self-compacting mortars with fly ash and silica fume." Construction and Building Materials, 144, 552-562.
- Chen, X., Wu, S., Zhou, J., (2013). Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater, 40, 869-874.
- Domone, P. L. J., Jin, J., (1999). Properties of mortar for self-compacting concrete. Rilem Proc, 7, 109-120.
- EFNARC (2005). (European Federation of Specialist Construction Chemicals and Concrete Systems). The European guidelines for selfcompacting concrete: Specification, production and use, U.K.
- Ghrici, M., Kenai, S., Said-Mansour, M., (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement and Concrete Composites, 29(7), 542-549.
- Karatas, M., Benli, A., Ergin, A., (2017). Influence of ground pumice powder on the mechanical properties and durability of self-compacting mortars. Constr Build Mater, 150, 467-479.
- Leung, H. Y., Kim, J., Nadeem, A., Jaganathan, J., Anwar, M. P., (2016). Sorptivity of self-compacting concrete containing fly ash and silica fume. Construction and Building Materials, 113, 369-375.
- Li, L. G., Ng, P.-L., Huang, Z.-H., Zhu, J., Kwan, A. K.-H., (2017). Effects of Micro-silica and Nano-silica on Fresh Properties of Mortar. Materials Science, 23(4).
- Mardani-Aghabaglou, A., İnan Sezer, G., Ramyar, K., (2014)., Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point. Constr Build Mater, 70, 17-25.
- Mohamed, O. A., Najm, O. F., (2017). Compressive strength and stability of sustainable self-consolidating concrete containing fly ash, silica fume, and GGBS. Frontiers of Structural and Civil Engineering, 11(4), 406-411.
- Poon, C. S., Wong, Y. L., Lam, L., (1997). The influence of different curing conditions on the pore structure and related properties of fly-ash cement pastes and mortars. Construction and Building Materials, 11(7-8), 383-393.
- Rao, S., Silva, P., de Brito, J., (2015). "Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2)." Constr Build Mater, 96, 508-517.
- Sabet, F. A., Libre, N. A., Shekarchi, M., (2013). Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Constr Build Mater, 44, 175-184.
- Sadrmomtazi, A., Tahmouresi, B., Saradar, A., (2018). Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr Build Mater, 162, 321-333.
- Sahmaran, M., Christianto, H. A., Yaman, I. O., (2006). The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars. Cement Concrete Comp, 28(5), 432-440.
- Siddique, R., (2013). Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of self-compacting concrete containing coal bottom ash. Construction and Building Materials, 47, 1444-1450.
- Sonebi, M., (2004). Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans. Cement and Concrete Research, 34(7), 1199-1208.
- Wang, D., Shi, C., Wu, Z., Wu, L., Xiang, S., Pan, X., (2016). Effects of nanomaterials on hardening of cement–silica fume–fly ash-based ultra-high-strength concrete. Advances in Cement Research, 28(9), 555-566.
- Wongkeo, W., Chaipanich, A., (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Mat Sci Eng a-Struct, 527(16-17), 3676-3684.
- Wongkeo, W., Thongsanitgarn, P., Chaipanich, A., (2012). Compressive Strength of Binary and Ternary Blended Cement Mortars Containing Fly Ash and Silica Fume Under Autoclaved Curing. Materials for Environmental Protection and Energy Application, Pts 1 and 2, 343-344, 316-321.
- Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials & Design, 64, 261-269.
- Yahia, A., Tanimura, M., Shimabukuro, A., Shimoyama, Y., (1999). Effect of rheological parameters on self-compactability of concrete containing various mineral admixtures. Rilem Proc, 7, 523-535.
- Zhao, Z. G., Qu, X. L., Li, F. X., Wei, J. X., (2018). Effects of steel slag and silica fume additions on compressive strength and thermal properties of lime-fly ash pastes. Construction and Building Materials, 183, 439-450.