Research Article
BibTex RIS Cite

915 MHz taşıyıcı frekansında RF enerji hasatlama

Year 2019, , 91 - 98, 15.03.2019
https://doi.org/10.24012/dumf.480307

Abstract



RF
enerji hasatlama gelecek vaat eden bir teknolojidir.
Nesnelerin interneti, kablosuz sensör ağları
veya çok düşük güç tüketen birçok cihaz ve uygulama için gerekli olan enerji RF
enerji hasatlama teknoloji sayesinde kablosuz olarak karşılanabilmektedir.
Fiziksel erişimin çok zor olduğu veya çok riskli olduğu alanlardaki cihazların
enerji ihtiyacı yine bu teknoloji tarafından sağlanabilmektedir. Bununla
birlikte RF enerji hasatlama  destekleyici bir enerji kaynağı olarak
kullanıldığında batarya ömrünü de uzatmaktadır. 



Bu
çalışmada, National Instrument firmasına ait PXIe-1082 sinyal üreteci 915 MHz
taşıcıyı frekansında ve sürekli dalga modunda 0 dBm’den başlayarak 10 dBm’e
kadar RF giriş güç sinyali üretmiştir. Üretilen RF güç sinyali koaksiyel kablo vasıtasıyla
doğrudan Powercast firmasının P2110-EVB enerji hasatlama modülünü gönderilmiştir.
Enerji hasatlama modülünün girişine gelen RF güç sinyaline karşılık üretmiş
olduğu akım ve gerilim değerleri bir multimetre ile ölçülmüş ve kaydedilmiştir.
Daha sonra ölçülen akım ve gerilim değerleriyle enerji hasatlama modülünün üretmiş
olduğu DC çıkış gücü hesaplanmıştır. Ayrıca enerji hasatlama devrelerinin
başarısını gösteren güç verimlilik eğrisi grafik üzerinde gösterilmiştir.



Elde
edilen ölçüm sonuçlarına göre 5 dBm RF giriş güç seviyesine karşılık en yüksek
güç verimlilik oranı %56.92 olarak hesaplanmıştır. Bununla birlikte 0 dBm RF
giriş güç seviyesine karşılık en düşük güç verimlilik oranı %45.60 olarak belirlenmiştir.
915 MHz taşıcıyı frekansında sürekli dalga modunda 0 dBm ile 10 dBm arasında RF
enerji hasatlama modülünün  girişine
gelen gücün yaklaşık yarısı oranında enerji hasatlama yaptığı tespit
edilmiştir. 



References

  • Altinel, D. & Karabulut Kurt, G., 2016. Energy Harvesting from Multiple RF Sources in Wireless Fading Channels. IEEE Transactions on Vehicular Technology, 65(11), pp.8854–8864.
  • Altinel, D. & Kurt, G.K., 2014. Statistical models for battery recharging time in RF energy harvesting systems. In 2014 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, pp. 636–641. Available at: http://ieeexplore.ieee.org/document/6952122/.
  • Arrawatia, M., Maryam Shojaei Baghini & Kumar, G., 2011. RF energy harvesting system from cell towers in 900MHz band. In 2011 National Conference on Communications (NCC). IEEE, pp. 1–5. Available at: http://ieeexplore.ieee.org/document/5734733/.
  • Bolos, F., Belo, D. & Georgiadis, A., 2016. A UHF rectifier with one octave bandwidth based on a non-uniform transmission line. In 2016 IEEE MTT-S International Microwave Symposium (IMS). IEEE, pp. 1–3. Available at: http://ieeexplore.ieee.org/document/7540083/.
  • Cansiz, M. et al., 2016. Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health. Journal of Exposure Science & Environmental Epidemiology, (October), pp.1–5. Available at: http://www.nature.com/doifinder/10.1038/jes.2016.64.
  • Cansiz, M. & Kurt, M.B., 2012. Drive Test Yöntemi ile Elektromanyetik Kirlilik Haritasının Çıkartılması ve Ölçüm Sonuçlarının Değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 3(2), pp.101–110.
  • Jaffe, P. & McSpadden, J., 2013. Energy Conversion and Transmission Modules for Space Solar Power. Proceedings of the IEEE, 101(6), pp.1424–1437. Available at: http://ieeexplore.ieee.org/document/6494252/.
  • Kawahara, Y., Tsukada, K. & Asami, T., 2009. Feasibility and potential application of power scavenging from environmental RF signals. In 2009 IEEE Antennas and Propagation Society International Symposium. IEEE, pp. 1–4. Available at: http://ieeexplore.ieee.org/document/5171785/.
  • Kim, S. et al., 2014. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), pp.1649–1666. Kuhn, V. et al., 2015. A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Up to 84%. IEEE Transactions on Microwave Theory and Techniques, 63(5), pp.1768–1778. Available at: http://ieeexplore.ieee.org/document/7080943/.
  • Le, T., Mayaram, K. & Fiez, T., 2008. Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks. IEEE Journal of Solid-State Circuits, 43(5), pp.1287–1302. Available at: http://ieeexplore.ieee.org/document/4494663/.
  • Niotaki, K. et al., 2014. Dual-Band Resistance Compression Networks for Improved Rectifier Performance. IEEE Transactions on Microwave Theory and Techniques, 62(12), pp.3512–3521. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6957619.
  • Noguchi, A. & Arai, H., 2013. Small loop rectenna for RF energy harvesting. In 2013 Asia-Pacific Microwave Conference Proceedings (APMC). IEEE, pp. 86–88. Available at: http://ieeexplore.ieee.org/document/6695199/.
  • Oka, T. et al., 2014. Triple-band single-diode microwave rectifier using CRLH transmission line. Asia-Pacific Microwave Conference, (c), pp.1013–1015.
  • Olgun, U., Chen, C.-C. & Volakis, J.L., 2010. Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs. In 2010 URSI International Symposium on Electromagnetic Theory. IEEE, pp. 329–331. Available at: http://ieeexplore.ieee.org/document/5637008/.
  • Pinuela, M., Mitcheson, P.D. & Lucyszyn, S., 2013. Ambient RF Energy Harvesting in Urban and Semi-Urban Environments. IEEE Transactions on Microwave Theory and Techniques, 61(7), pp.2715–2726. Available at: http://ieeexplore.ieee.org/document/6519964/.
  • Reinisch, H. et al., 2011. An Electro-Magnetic Energy Harvesting System With 190 nW Idle Mode Power Consumption for a BAW Based Wireless Sensor Node. IEEE Journal of Solid-State Circuits, 46(7), pp.1728–1741. Available at: http://ieeexplore.ieee.org/document/5928970/.
  • Siddique, A.R.M. et al., 2016. Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique. Energy, 115, pp.1081–1091. Available at: http://dx.doi.org/10.1016/j.energy.2016.09.087.
  • Song, C. et al., 2015. A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting A High-efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting. , 63(MAY), pp.3486–3495.
  • Song, C. et al., 2017. Matching Network Elimination in Broadband Rectennas for High-Efficiency Wireless Power Transfer and Energy Harvesting. IEEE Transactions on Industrial Electronics, 64(5), pp.3950–3961. Available at: http://ieeexplore.ieee.org/document/7801010/.
  • Sun, H. et al., 2013. A Dual-Band Rectenna Using Broadband Yagi Antenna Array for Ambient RF Power Harvesting. IEEE Antennas and Wireless Propagation Letters, 12, pp.918–921. Available at: http://ieeexplore.ieee.org/document/6557434/.
  • Takacs, A. et al., 2017. Recent advances in electromagnetic energy harvesting and Wireless Power Transfer for IoT and SHM applications. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM). IEEE, pp. 1–4. Available at: http://ieeexplore.ieee.org/document/7945868/.
  • Turkmen, A.C. & Celik, C., 2018. Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, pp.556–564. Available at: https://doi.org/10.1016/j.energy.2017.12.159.
  • Visser, H.J. & Vullers, R.J.M., 2012. Wireless sensors remotely powered by RF energy. In 2012 6th European Conference on Antennas and Propagation (EUCAP). IEEE, pp. 1–4. Available at: http://ieeexplore.ieee.org/document/6206234/.
  • Wang, D. & Negra, R., 2013. Design of a dual-band rectifier for wireless power transmission. In 2013 IEEE Wireless Power Transfer (WPT). IEEE, pp. 127–130. Available at: http://ieeexplore.ieee.org/document/6556899/.
Year 2019, , 91 - 98, 15.03.2019
https://doi.org/10.24012/dumf.480307

Abstract

References

  • Altinel, D. & Karabulut Kurt, G., 2016. Energy Harvesting from Multiple RF Sources in Wireless Fading Channels. IEEE Transactions on Vehicular Technology, 65(11), pp.8854–8864.
  • Altinel, D. & Kurt, G.K., 2014. Statistical models for battery recharging time in RF energy harvesting systems. In 2014 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, pp. 636–641. Available at: http://ieeexplore.ieee.org/document/6952122/.
  • Arrawatia, M., Maryam Shojaei Baghini & Kumar, G., 2011. RF energy harvesting system from cell towers in 900MHz band. In 2011 National Conference on Communications (NCC). IEEE, pp. 1–5. Available at: http://ieeexplore.ieee.org/document/5734733/.
  • Bolos, F., Belo, D. & Georgiadis, A., 2016. A UHF rectifier with one octave bandwidth based on a non-uniform transmission line. In 2016 IEEE MTT-S International Microwave Symposium (IMS). IEEE, pp. 1–3. Available at: http://ieeexplore.ieee.org/document/7540083/.
  • Cansiz, M. et al., 2016. Mapping of radio frequency electromagnetic field exposure levels in outdoor environment and comparing with reference levels for general public health. Journal of Exposure Science & Environmental Epidemiology, (October), pp.1–5. Available at: http://www.nature.com/doifinder/10.1038/jes.2016.64.
  • Cansiz, M. & Kurt, M.B., 2012. Drive Test Yöntemi ile Elektromanyetik Kirlilik Haritasının Çıkartılması ve Ölçüm Sonuçlarının Değerlendirilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 3(2), pp.101–110.
  • Jaffe, P. & McSpadden, J., 2013. Energy Conversion and Transmission Modules for Space Solar Power. Proceedings of the IEEE, 101(6), pp.1424–1437. Available at: http://ieeexplore.ieee.org/document/6494252/.
  • Kawahara, Y., Tsukada, K. & Asami, T., 2009. Feasibility and potential application of power scavenging from environmental RF signals. In 2009 IEEE Antennas and Propagation Society International Symposium. IEEE, pp. 1–4. Available at: http://ieeexplore.ieee.org/document/5171785/.
  • Kim, S. et al., 2014. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), pp.1649–1666. Kuhn, V. et al., 2015. A Multi-Band Stacked RF Energy Harvester With RF-to-DC Efficiency Up to 84%. IEEE Transactions on Microwave Theory and Techniques, 63(5), pp.1768–1778. Available at: http://ieeexplore.ieee.org/document/7080943/.
  • Le, T., Mayaram, K. & Fiez, T., 2008. Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks. IEEE Journal of Solid-State Circuits, 43(5), pp.1287–1302. Available at: http://ieeexplore.ieee.org/document/4494663/.
  • Niotaki, K. et al., 2014. Dual-Band Resistance Compression Networks for Improved Rectifier Performance. IEEE Transactions on Microwave Theory and Techniques, 62(12), pp.3512–3521. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6957619.
  • Noguchi, A. & Arai, H., 2013. Small loop rectenna for RF energy harvesting. In 2013 Asia-Pacific Microwave Conference Proceedings (APMC). IEEE, pp. 86–88. Available at: http://ieeexplore.ieee.org/document/6695199/.
  • Oka, T. et al., 2014. Triple-band single-diode microwave rectifier using CRLH transmission line. Asia-Pacific Microwave Conference, (c), pp.1013–1015.
  • Olgun, U., Chen, C.-C. & Volakis, J.L., 2010. Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs. In 2010 URSI International Symposium on Electromagnetic Theory. IEEE, pp. 329–331. Available at: http://ieeexplore.ieee.org/document/5637008/.
  • Pinuela, M., Mitcheson, P.D. & Lucyszyn, S., 2013. Ambient RF Energy Harvesting in Urban and Semi-Urban Environments. IEEE Transactions on Microwave Theory and Techniques, 61(7), pp.2715–2726. Available at: http://ieeexplore.ieee.org/document/6519964/.
  • Reinisch, H. et al., 2011. An Electro-Magnetic Energy Harvesting System With 190 nW Idle Mode Power Consumption for a BAW Based Wireless Sensor Node. IEEE Journal of Solid-State Circuits, 46(7), pp.1728–1741. Available at: http://ieeexplore.ieee.org/document/5928970/.
  • Siddique, A.R.M. et al., 2016. Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique. Energy, 115, pp.1081–1091. Available at: http://dx.doi.org/10.1016/j.energy.2016.09.087.
  • Song, C. et al., 2015. A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting A High-efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting. , 63(MAY), pp.3486–3495.
  • Song, C. et al., 2017. Matching Network Elimination in Broadband Rectennas for High-Efficiency Wireless Power Transfer and Energy Harvesting. IEEE Transactions on Industrial Electronics, 64(5), pp.3950–3961. Available at: http://ieeexplore.ieee.org/document/7801010/.
  • Sun, H. et al., 2013. A Dual-Band Rectenna Using Broadband Yagi Antenna Array for Ambient RF Power Harvesting. IEEE Antennas and Wireless Propagation Letters, 12, pp.918–921. Available at: http://ieeexplore.ieee.org/document/6557434/.
  • Takacs, A. et al., 2017. Recent advances in electromagnetic energy harvesting and Wireless Power Transfer for IoT and SHM applications. In 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM). IEEE, pp. 1–4. Available at: http://ieeexplore.ieee.org/document/7945868/.
  • Turkmen, A.C. & Celik, C., 2018. Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, pp.556–564. Available at: https://doi.org/10.1016/j.energy.2017.12.159.
  • Visser, H.J. & Vullers, R.J.M., 2012. Wireless sensors remotely powered by RF energy. In 2012 6th European Conference on Antennas and Propagation (EUCAP). IEEE, pp. 1–4. Available at: http://ieeexplore.ieee.org/document/6206234/.
  • Wang, D. & Negra, R., 2013. Design of a dual-band rectifier for wireless power transmission. In 2013 IEEE Wireless Power Transfer (WPT). IEEE, pp. 127–130. Available at: http://ieeexplore.ieee.org/document/6556899/.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mustafa Cansız 0000-0003-2534-9770

Publication Date March 15, 2019
Submission Date November 8, 2018
Published in Issue Year 2019

Cite

IEEE M. Cansız, “915 MHz taşıyıcı frekansında RF enerji hasatlama”, DÜMF MD, vol. 10, no. 1, pp. 91–98, 2019, doi: 10.24012/dumf.480307.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456