Research Article
BibTex RIS Cite

Investigation of Dry Sliding Behavior of Blast Furnace Slag Reinforced Epoxy Composite

Year 2019, , 647 - 654, 20.06.2019
https://doi.org/10.24012/dumf.486707

Abstract

Polymer matrix composites are advanced materials that
can be used in a variety of applications such as low density, high strength,
automobile, aerospace and home appliances. Common and commercially used
composites generally use polymers as matrix materials and are commonly known as
resin solutions. variety of polymer materials are available as matrix type and
the commonly used matrix materials are epoxy, urethane, polyamide, polyester,
polyether ether ketone (PEEK)… The reinforcement materials used are generally
fibers, particles and ground minerals.

 

Due to the increasing production of iron and steel,
high levels of slag are emerging and pose problems for both producers and the
environment. From this point of view, in this study, it has been investigated
on the wear behavior of the epoxy matrix as a reinforcement in order to
evaluate the blast furnace slag (BFS), which is known to have hard ceramic
components.

 

EP100 epoxy resin and EP385H hardener are commercially
available. The epoxy resin was selected as matrix and Al2O3
and blast furnace slag dusts of 61 µm, 91 µm and 125 µm were used as
reinforcement (Table 1). In the produced composites the reinforcement ratio was
kept constant at 30% and the epoxy and reinforcement powders were mixed until a
homogeneous mixture was obtained. The curing agent was added during the mixture
and at the end of the process the mixture was poured into the silicone mold.
The samples were then allowed to cure for 36 hours at room temperature. Dry
sliding wear behavior of samples tested with ball on disc wear device.

 

The wear resistance of the composites reinforced with
blast furnace slag at all conditions was higher than the samples reinforced
with Al2O3. However, the volume losses of composites
reinforced with blast furnace slag especially at low loads are much lower than
the samples reinforced with Al2O3. The reason for this;
It can be shown that the blast furnace slag having a fragile structure is
broken under high load and divided into many sharp edges and these particles
contribute to abrasion by acting as abrasive material in front of the abrasive
ball.

 

The volume losses of the samples increased with
increasing load. Because the two forces during wear affect the wear losses. One
of them is the force acting on the counter-surface of the ball, while the other
is the shear force. The increase of the load increased the penetration of
abrasive ball to the opposite surface. Therefore, the amount of material to be
affected during the relative movement of the abrasive ball is also increased.
As a result, if sufficient shear force occurs, it transfers more mass from the
ball to the surface. In both types of composite, increased reinforcement
particle size resulted in increased wear losses. Low size reinforcement
particles are more homogeneously distributed in the matrix at more points.
In this case
abrasive ball will be more difficult to penetrate into the matrix and will
contribute more to the wear resistance of the low-dimensional particle
reinforced composite material. In addition, low-dimensional particles will have
more adhesion in the matrix. This will help reduce wear losses.

 





















Both Al2O3 and blast furnace
slag reinforced composites showed fatigue related surface deterioration and
plastic deformation wear mechanisms. However, plastic deformation was the
predominant wear mechanism in blast furnace slag reinforced composites, while
Al2O3 reinforced composites were predominantly identified
as a fatigue-related surface damage wear mechanism.

References

  • Bazrgari D., Moztarzadeh F., Sabbagh-Alvani A.A., Rasoulianboroujeni M., Tahriri M., Tayebi L., (2018). Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite, Ceramics International, 44, 1220–1224.
  • Hanumantharaya R, Vaishak N L, Suhas, Mahesh B Davanageri, Jaimon D Quadros, Premkumar B G, (2018). Mechanical and Tribological Wear Behavior of Epoxy Hybrid Composites, Materials Today: Proceedings, 5 7947–7953.
  • Kanchanomai C., Noraphaiphipaksa N., Mutoh Y., (2011). Wear characteristic of epoxy resin filled with crushed-silica particles, Composites: Part B, 42 1446–1452.Kranthi G., Satapathy A., (2010). Evaluation and prediction of wear response of pine wood dust filled epoxy composites using neural computation, Computational Materials Science, 49 609–614.
  • Kumar S. T., Shivashankar G. S., Dhotey K., Singh J., (2017). Experimental study wear rate of glass fibre reinforced epoxy polymer composites filled with aluminium powder, Materials Today: Proceedings, 4, 10764–10768.
  • Kurahatti R.V., Surendranathan A. O., Ramesh A.V. Kumar, Wadageri C. S., Auradi V., Kori S. A., (2014). Dry Sliding Wear behaviour of Epoxy reinforced with nano ZrO2 Particles, Procedia Materials Science, 5 274 – 280.
  • Lin Leyu, Alois K. S., (2018). The roles of rigid particles on the friction and wear behavior of short carbon fiber reinforced PBT hybrid materials in the absence of solid lubricants, Tribology International, 119 404–410.
  • Madhanagopal A., Gopalakannan S., (2018). Dry slide wear behavior of boron carbide filled epoxy composites, Materials Today: Proceedings 5, 7289–7295.Pattanaik A., Satpathy M. P., (2016). Subash Chandra Mishra, Dry sliding wear behavior of epoxy fly ash composite with Taguchi optimization, Engineering Science and Technology, an International Journal, 19, 710–716.
  • Shahapurkar K., Chavan V. B., Doddamani M., Mohan Kumar G.C., (2018). Influence of surface modification on wear behavior of fly ash cenosphere/epoxy syntactic foam, Wear, 414–415 327–340.
  • Shivamurthy B., Uday K. Bhat, S. (2013). Anandhan, Mechanical and sliding wear properties of multi-layered laminates from glass fabric/graphite/epoxy composites, Materials and Design, 44 136–143.
  • Sudarshan Rao K., Varadarajan Y. S., Rajendra N., (2015). Erosive wear behaviour of carbon fiber-reinforced epoxy composite, Materials Today: Proceedings, 2, 2975 – 2983.
  • Sudheer M., (2016). Evaluation of abrasive wear behavior of dual ceramic whisker reinforced epoxy composites, Materials Discovery 6, 17–27.
  • Suresha B., Siddaramaiah, Kishore, Seetharamu S., Sampath Kumaran P., (2009). Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites, Wear, 267 1405–1414.
  • Wu Y., Yu Z., Liu X., (2017). Tribological performance of in-situ epoxy composites filled with micro-sized ZrB2 particles, Composites Part B, 123, 148-153.
  • Xing X.S., Li R.K.Y., (2004). Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles, Wear, 256 21–26.

Yüksek Fırın Cürufu Takviyeli Epoksi Kompozitin Kuru Kayma Davranışının İncelenmesi

Year 2019, , 647 - 654, 20.06.2019
https://doi.org/10.24012/dumf.486707

Abstract

Bu çalışmada yüksek fırın cürufu partiküllerinin epoksi matris içine katılarak oluşturulan polimer matrisli kompozitin aşınma dayanımına etkisi araştırılmıştır. Karşılaştırma yapmak amacıyla yüksek fırın cürufu takviyeli kompozit yanında Al2O3 katkılı epoksi matrisli kompozitler üretilmiştir. Takviye edici partikül olarak 61 μm, 91 μm ve 125 μm boyutunda yüksek fırın cürufu ve Al2O3 tozları, %30 oranında epoksi reçine içine karıştırılmıştır. Oda sıcaklığında 36 saat kürleme işlemine bırakılan numuneler ball-on disk aşınma cihazında aşınma işlemine tabi tutulmuştur. 10N, 15N ve 20N yükler altında 300 m aşınma işlemi uygulanan numunelerde yüksek fırın cürufu katkılı kompozitin Al2O3 katkılı kompozitle kıyaslanarak aşınma ve sürtünme davranışı incelenmiştir. Aşınma yüzeylerinde meydana gelen hacim kayıpları ve muhtemel aşınma mekanizmaları SEM mikroskobu ile incelenmiştir. Aşınma testleri sonucunda özellikle düşük yüklerde olmak üzere tüm yükler altında yüksek fırın cürufu takviyeli kompozitin aşınma kayıpları Al2O3‘e oranla daha düşük çıkmıştır. Artan yüke bağlı olarak kompozitlerin aşınma dayanımları arasındaki fark azalmıştır. Artan yüke bağlı olarak batıcı uçun numune üstünde oluşturduğu kuvvetlerin artması, tüm numunelerde aşınma hacim kayıplarını artırmıştır. Takviye edici partikül boyutunun artması matris-partikül tutunmasını zayıflattığı ve daha az alanda var olduğu için kompozitlerin aşınma dayanımında düşüşe sebep olmuştur. Yüksek fırın cürufu takviyeli kompozitlerde baskın aşınma türü olarak plastik deformasyon görülürken, Al2O3 takviyeli kompozitlerde yüzey altı yorulması aşınma mekanizması baskın olarak görülmüştür.

References

  • Bazrgari D., Moztarzadeh F., Sabbagh-Alvani A.A., Rasoulianboroujeni M., Tahriri M., Tayebi L., (2018). Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite, Ceramics International, 44, 1220–1224.
  • Hanumantharaya R, Vaishak N L, Suhas, Mahesh B Davanageri, Jaimon D Quadros, Premkumar B G, (2018). Mechanical and Tribological Wear Behavior of Epoxy Hybrid Composites, Materials Today: Proceedings, 5 7947–7953.
  • Kanchanomai C., Noraphaiphipaksa N., Mutoh Y., (2011). Wear characteristic of epoxy resin filled with crushed-silica particles, Composites: Part B, 42 1446–1452.Kranthi G., Satapathy A., (2010). Evaluation and prediction of wear response of pine wood dust filled epoxy composites using neural computation, Computational Materials Science, 49 609–614.
  • Kumar S. T., Shivashankar G. S., Dhotey K., Singh J., (2017). Experimental study wear rate of glass fibre reinforced epoxy polymer composites filled with aluminium powder, Materials Today: Proceedings, 4, 10764–10768.
  • Kurahatti R.V., Surendranathan A. O., Ramesh A.V. Kumar, Wadageri C. S., Auradi V., Kori S. A., (2014). Dry Sliding Wear behaviour of Epoxy reinforced with nano ZrO2 Particles, Procedia Materials Science, 5 274 – 280.
  • Lin Leyu, Alois K. S., (2018). The roles of rigid particles on the friction and wear behavior of short carbon fiber reinforced PBT hybrid materials in the absence of solid lubricants, Tribology International, 119 404–410.
  • Madhanagopal A., Gopalakannan S., (2018). Dry slide wear behavior of boron carbide filled epoxy composites, Materials Today: Proceedings 5, 7289–7295.Pattanaik A., Satpathy M. P., (2016). Subash Chandra Mishra, Dry sliding wear behavior of epoxy fly ash composite with Taguchi optimization, Engineering Science and Technology, an International Journal, 19, 710–716.
  • Shahapurkar K., Chavan V. B., Doddamani M., Mohan Kumar G.C., (2018). Influence of surface modification on wear behavior of fly ash cenosphere/epoxy syntactic foam, Wear, 414–415 327–340.
  • Shivamurthy B., Uday K. Bhat, S. (2013). Anandhan, Mechanical and sliding wear properties of multi-layered laminates from glass fabric/graphite/epoxy composites, Materials and Design, 44 136–143.
  • Sudarshan Rao K., Varadarajan Y. S., Rajendra N., (2015). Erosive wear behaviour of carbon fiber-reinforced epoxy composite, Materials Today: Proceedings, 2, 2975 – 2983.
  • Sudheer M., (2016). Evaluation of abrasive wear behavior of dual ceramic whisker reinforced epoxy composites, Materials Discovery 6, 17–27.
  • Suresha B., Siddaramaiah, Kishore, Seetharamu S., Sampath Kumaran P., (2009). Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites, Wear, 267 1405–1414.
  • Wu Y., Yu Z., Liu X., (2017). Tribological performance of in-situ epoxy composites filled with micro-sized ZrB2 particles, Composites Part B, 123, 148-153.
  • Xing X.S., Li R.K.Y., (2004). Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles, Wear, 256 21–26.
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Azmi Erdogan 0000-0001-8337-7919

Publication Date June 20, 2019
Submission Date November 22, 2018
Published in Issue Year 2019

Cite

IEEE A. Erdogan, “Yüksek Fırın Cürufu Takviyeli Epoksi Kompozitin Kuru Kayma Davranışının İncelenmesi”, DÜMF MD, vol. 10, no. 2, pp. 647–654, 2019, doi: 10.24012/dumf.486707.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456