Research Article
BibTex RIS Cite

Gümüş nano malzemelerin çevre dostu, hızlı sentezi ve biomedikal uygulamaları

Year 2021, , 329 - 336, 30.03.2021
https://doi.org/10.24012/dumf.880878

Abstract

Bu çalışmada, ceviz yaprakları kullanılarak hazırlanan özüt ile gümüş nano malzemeler çevre dostu hızlı ve basit bir şekilde sentezlendi. Elde edilen bu malzemelerin karakterizasyonu UV-visiblespektrofotometre (UV-Vis.), Fourier dönüşümü kızılötesi spektroskopisi (FTIR), X- Işınımı Kırınımı Difraktrometresi(XRD), Taramalı Elektron Mikroskobu (SEM), zeta potansiyeli analiz verileri ile belirlendi. Gümüş nano malzemelerin 454.01 nm dalga boyunda maksimum absorbans, 23.66 nm kristal nano boyut, küresel görünüm ve -11.53 mV zeta potansiyeline sahip oldukları belirlendi. Biomedikal ugulamalar için anti-mikrobiyal etkileri patojen türler üzerinde incelendi. Bu türler üzerinde Minumum İnhibisyon Konsantrasyonları (MİK) 0.25-1.0 mg/L olarak mikrodilusyon yöntemi ile belirlendi.

References

  • [1] Narayan, S., Dipak, S., (2015). Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia ( Mont .) Wittrock and evaluation of their antibacterial activity. Applied Nanoscience. 5, 703–709.
  • [2] Sudhakar, C., Selvam, K., Govarthanan, M., (2015). Acorus calamus rhizome extract mediated biosynthesis of silver nanoparticles and their bactericidal activity against human pathogens. Journal of Genetic Engineering and Biotechnology. 13 (2), 93–99.
  • [3] Ojo, O.A., Oyinloye, B.E., Ojo, A.B., Afolabi, O.B., Peters, O.A., Olaiya, O., Fadaka, A., Jonathan, j., Osunlana, O., (2017). Green Synthesis of Silver Nanoparticles ( AgNPs ) Using Talinum triangulare ( Jacq .) Willd . Leaf Extract and Monitoring Their Antimicrobial Activity. Journal of Bionanoscience. 11, 292–296.
  • [4] Baran, M.F., Keskin, C., Atalar, MN., Baran, A., (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 11 (1), 365–375.
  • [5] Mohammadi, F., Yousefi, M., and Ghahremanzadeh, R., (2019). Green Synthesis , Characterization and Antimicrobial Activity of Silver Nanoparticles ( AgNps ) Using Leaves and Stems Extract of Some Plants. Advanced Journal of Chemistry-Section A. 2 (4), 266–275.
  • [6] Baran, M.F., Saydut, A., Umaz, A., (2019). Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. Dicle Üniversitesi Mühendislik Dergisi. 10 (2), 689–695.
  • [7] Baran, M., (2019). Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül ( AgNP ) sentezi ve antimikrobiyal etkisinin incelenmesi. Dicle Üniversitesi Mühendislik Dergisi. 10 (1), 221–227.
  • [8] Ali, Z.A., Yahya, R., Sekaran, S.D., Puteh, R., (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Advances in Materials Science and Engineering. 2016, 1–6.
  • [9] Baran, M. F., Saydut, A., (2019). Altın nanomalzeme sentezi ve karekterizasyonu. Dicle Üniversitesi Mühendislik Dergisi. 10 (3), 1033–1040.
  • [10] S, Majeed., Mohd, S. A., Gouri K. D., Mohammed, T.A., Anima, N., (2016). Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chinese Journal of Natural Medicines. 14 (8), 615–620.
  • [11] Mousavi, S.A., Almasi, A., Navazeshkh, F., Falahi, F., (2019). Biosorption of lead from aqueous solutions by algae biomass: Optimization and modeling. Desalination and Water Treatment. 148, 229–237.
  • [12] Gopalu, K., Matheswaran J., Alexander, G., Juan, Antonio LT., Evgeny, K., D.K., (2016). Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications. The Journal of The Minerals, Metals & Materials Society. 69, 1206–1212.
  • [13] Eren, A., Baran, M.F., (2019). Fıstık ( Pistacia vera L . ) Yaprağından Gümüş Nanopartikül ( AgNP )’ lerin Sentezi , Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi Synthesis , Characterization and Investigation of Antimicrobial Activity of Silver Nanoparticles ( AgNP ). 6 (2), 165–173.
  • [14] Ramkumar, V.S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G.D., Dung, T.N.B., Kannapiran, E., (2017). Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports. 14, 1–7.
  • [15] Ahmed, M.J., Murtaza, G., Rashid, F., Iqbal, J., (2019). Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug Development and Industrial Pharmacy I. 45 1682–1694.
  • [16] Patil, M.P., Singh, R.D., Koli, P.B., Patil, K.T., Jagdale, B.S., Tipare, A.R., Kim, G.D., (2018). Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial Pathogenesis. 121, 184–189.
  • [17] Song, J.Y., Kim, B.S., (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering. 32 (1), 79–84.
  • [18] Baran, M.F. (2019) Synthesis and Antimicrobial Applications of Silver Nanoparticles From artemisia absinthium plant. Biological and Chemical Research. 6, 96–103.
  • [19] Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., (2012). Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus. International Journal of Molecular Sciences. 13, 466–476.
  • [20] Kumar, V., Gundampati, R.K., Singh, D.K., Bano, D., Jagannadham, M. V., Hasan, S.H., (2016). Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. Journal of Photochemistry and Photobiology B: Biology. 162, 374–385.
  • [21] Swamy, M.K., Akhtar, M.S., Mohanty, S.K., and Sinniah, U.R., (2015). Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 151, 939–944.
  • [22] Baran, M.F., (2019). Alıç Bitkisinin Yaprak Özütü Kullanılarak AgNP’erin Yeşil Sentezi ve Anti Mikrobiyal Aktivitelerinin Değerlendirilmesi. in: Gece Kitaplığı, pp. 113–119.
  • [23] Pechyen, C., (2020). A flower shape-green synthesis and characterization of silver nanoparticles ( AgNPs ). Integrative Medicine Research. 9 (5), 11003–11012.
  • [24] Remya, R.R., Rajasree, S.R.R., Aranganathan, L., Suman, T.Y., (2015). An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports. 8 110–115.
  • [25] Baran, M.F., Koç, A., Uzan, S., (2018). Kenger (Gundelia tournefortii) Yaprağı İle Gümüş Nanopartikül(Agnp) Sentezi, Karakterizasyonu ve Antimikrobiyal Uygulamaları. International Journal on Mathematic, Engineering and Natural Sciences. 5, 44–52.
  • [26] Sampaio, S., Viana, J.C., (2018). Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Advances in Natural Sciences: Nanoscience and Nanotechnology. 9 (4), 1–10.
  • [27] Baran., M.F., (2019). Synthesis , Characterization And Investigation Of Antimicrobial Activity Of Silver Nanoparticles From Cydonia Oblonga Leaf. Applıed Ecology and Envıronmental Research. 17 (2), 2583–2592.
  • [28] Rolim, W.R., Pelegrino, M.T., de Araújo Lima, B., Ferraz, L.S., Costa, F.N., Bernardes, J.S., Rodigues, T., Brocchi, M., Seabra, A. B., (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science. 463, 66–74.
  • [29] Thomas, B., Vithiya, B.S.M., Prasad, T.A.A., Mohamed, S.B., Magdalane, C.M., Kaviyarasu, K., Maaza, M., (2018). Antioxidant and Photocatalytic Activity of Aqueous Leaf Extract Mediated Green Synthesis of Silver Nanoparticles Using Passiflora edulis f. flavicarpa . Journal of Nanoscience and Nanotechnology. 19 (5), 2640–2648.
  • [30] Arumai Selvan, D., Mahendiran, D., Senthil Kumar, R., Kalilur Rahiman, A., (2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology. 180, 243–252.
  • [31] Oliveira, A.C. de J., Araújo, A.R. de, Quelemes, P.V., Nadvorny, D., Soares-Sobrinho, J.L., Leite, José Roberto Sousa, A. S., Edson Cavalcanti, S., Durcilene A., (2019). Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydrate Polymers. 213, 176–183.
  • [32] Patil, M.P., Singh, R.D., Koli, P.B., Patil, K.T., Jagdale, B.S., Tipare, A.R., Gun D., (2018). Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial Pathogenesis. 121, 184–189.
  • [33] Durán, N., Durán, M., Jesus, M.B. De, Seabra, A.B., Fávaro, W.J., Nakazato, G., (2015). Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomedicine: Nanotechnology, Biology, and Medicine. 12 (3), 789–799.
  • [34] Singh, P., Garg, A., Pandit, S., Mokkapati, V.R.S.S., (2018). Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials. 8 (12), 1–19.
  • [35] Gopinath, V., Priyadarshini, S., Loke, M.F., Arunkumar, J., Marsili, E., MubarakAli, D., Vadivelu, J., (2017). Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arabian Journal of Chemistry. 10 (8), 1107–1117.
  • [36] Eren, A., Baran, M.F, (2019). Green Synthesıs , Characterızatıon And Antımıcrobıal Actıvıty Of Sılver Nanopartıcles ( Agnps ) From Maıze ( Zea mays L .). Applıed Ecology and Envıronmental Research. 17 (2), 4097–4105.
  • [37] Emmanuel, R., Palanisamy, S., Chen, S., Chelladurai, K., Padmavathy, S., Saravanan, M., Fahad M.A, (2015). Antimicrobial ef fi cacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Materials Science & Engineering C. 56 374–379.
Year 2021, , 329 - 336, 30.03.2021
https://doi.org/10.24012/dumf.880878

Abstract

References

  • [1] Narayan, S., Dipak, S., (2015). Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia ( Mont .) Wittrock and evaluation of their antibacterial activity. Applied Nanoscience. 5, 703–709.
  • [2] Sudhakar, C., Selvam, K., Govarthanan, M., (2015). Acorus calamus rhizome extract mediated biosynthesis of silver nanoparticles and their bactericidal activity against human pathogens. Journal of Genetic Engineering and Biotechnology. 13 (2), 93–99.
  • [3] Ojo, O.A., Oyinloye, B.E., Ojo, A.B., Afolabi, O.B., Peters, O.A., Olaiya, O., Fadaka, A., Jonathan, j., Osunlana, O., (2017). Green Synthesis of Silver Nanoparticles ( AgNPs ) Using Talinum triangulare ( Jacq .) Willd . Leaf Extract and Monitoring Their Antimicrobial Activity. Journal of Bionanoscience. 11, 292–296.
  • [4] Baran, M.F., Keskin, C., Atalar, MN., Baran, A., (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 11 (1), 365–375.
  • [5] Mohammadi, F., Yousefi, M., and Ghahremanzadeh, R., (2019). Green Synthesis , Characterization and Antimicrobial Activity of Silver Nanoparticles ( AgNps ) Using Leaves and Stems Extract of Some Plants. Advanced Journal of Chemistry-Section A. 2 (4), 266–275.
  • [6] Baran, M.F., Saydut, A., Umaz, A., (2019). Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. Dicle Üniversitesi Mühendislik Dergisi. 10 (2), 689–695.
  • [7] Baran, M., (2019). Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül ( AgNP ) sentezi ve antimikrobiyal etkisinin incelenmesi. Dicle Üniversitesi Mühendislik Dergisi. 10 (1), 221–227.
  • [8] Ali, Z.A., Yahya, R., Sekaran, S.D., Puteh, R., (2016). Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Advances in Materials Science and Engineering. 2016, 1–6.
  • [9] Baran, M. F., Saydut, A., (2019). Altın nanomalzeme sentezi ve karekterizasyonu. Dicle Üniversitesi Mühendislik Dergisi. 10 (3), 1033–1040.
  • [10] S, Majeed., Mohd, S. A., Gouri K. D., Mohammed, T.A., Anima, N., (2016). Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chinese Journal of Natural Medicines. 14 (8), 615–620.
  • [11] Mousavi, S.A., Almasi, A., Navazeshkh, F., Falahi, F., (2019). Biosorption of lead from aqueous solutions by algae biomass: Optimization and modeling. Desalination and Water Treatment. 148, 229–237.
  • [12] Gopalu, K., Matheswaran J., Alexander, G., Juan, Antonio LT., Evgeny, K., D.K., (2016). Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications. The Journal of The Minerals, Metals & Materials Society. 69, 1206–1212.
  • [13] Eren, A., Baran, M.F., (2019). Fıstık ( Pistacia vera L . ) Yaprağından Gümüş Nanopartikül ( AgNP )’ lerin Sentezi , Karakterizasyonu ve Antimikrobiyal Aktivitesinin İncelenmesi Synthesis , Characterization and Investigation of Antimicrobial Activity of Silver Nanoparticles ( AgNP ). 6 (2), 165–173.
  • [14] Ramkumar, V.S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G.D., Dung, T.N.B., Kannapiran, E., (2017). Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports. 14, 1–7.
  • [15] Ahmed, M.J., Murtaza, G., Rashid, F., Iqbal, J., (2019). Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug Development and Industrial Pharmacy I. 45 1682–1694.
  • [16] Patil, M.P., Singh, R.D., Koli, P.B., Patil, K.T., Jagdale, B.S., Tipare, A.R., Kim, G.D., (2018). Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial Pathogenesis. 121, 184–189.
  • [17] Song, J.Y., Kim, B.S., (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering. 32 (1), 79–84.
  • [18] Baran, M.F. (2019) Synthesis and Antimicrobial Applications of Silver Nanoparticles From artemisia absinthium plant. Biological and Chemical Research. 6, 96–103.
  • [19] Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., (2012). Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus. International Journal of Molecular Sciences. 13, 466–476.
  • [20] Kumar, V., Gundampati, R.K., Singh, D.K., Bano, D., Jagannadham, M. V., Hasan, S.H., (2016). Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. Journal of Photochemistry and Photobiology B: Biology. 162, 374–385.
  • [21] Swamy, M.K., Akhtar, M.S., Mohanty, S.K., and Sinniah, U.R., (2015). Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 151, 939–944.
  • [22] Baran, M.F., (2019). Alıç Bitkisinin Yaprak Özütü Kullanılarak AgNP’erin Yeşil Sentezi ve Anti Mikrobiyal Aktivitelerinin Değerlendirilmesi. in: Gece Kitaplığı, pp. 113–119.
  • [23] Pechyen, C., (2020). A flower shape-green synthesis and characterization of silver nanoparticles ( AgNPs ). Integrative Medicine Research. 9 (5), 11003–11012.
  • [24] Remya, R.R., Rajasree, S.R.R., Aranganathan, L., Suman, T.Y., (2015). An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnology Reports. 8 110–115.
  • [25] Baran, M.F., Koç, A., Uzan, S., (2018). Kenger (Gundelia tournefortii) Yaprağı İle Gümüş Nanopartikül(Agnp) Sentezi, Karakterizasyonu ve Antimikrobiyal Uygulamaları. International Journal on Mathematic, Engineering and Natural Sciences. 5, 44–52.
  • [26] Sampaio, S., Viana, J.C., (2018). Production of silver nanoparticles by green synthesis using artichoke (Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity. Advances in Natural Sciences: Nanoscience and Nanotechnology. 9 (4), 1–10.
  • [27] Baran., M.F., (2019). Synthesis , Characterization And Investigation Of Antimicrobial Activity Of Silver Nanoparticles From Cydonia Oblonga Leaf. Applıed Ecology and Envıronmental Research. 17 (2), 2583–2592.
  • [28] Rolim, W.R., Pelegrino, M.T., de Araújo Lima, B., Ferraz, L.S., Costa, F.N., Bernardes, J.S., Rodigues, T., Brocchi, M., Seabra, A. B., (2019). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science. 463, 66–74.
  • [29] Thomas, B., Vithiya, B.S.M., Prasad, T.A.A., Mohamed, S.B., Magdalane, C.M., Kaviyarasu, K., Maaza, M., (2018). Antioxidant and Photocatalytic Activity of Aqueous Leaf Extract Mediated Green Synthesis of Silver Nanoparticles Using Passiflora edulis f. flavicarpa . Journal of Nanoscience and Nanotechnology. 19 (5), 2640–2648.
  • [30] Arumai Selvan, D., Mahendiran, D., Senthil Kumar, R., Kalilur Rahiman, A., (2018). Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology. 180, 243–252.
  • [31] Oliveira, A.C. de J., Araújo, A.R. de, Quelemes, P.V., Nadvorny, D., Soares-Sobrinho, J.L., Leite, José Roberto Sousa, A. S., Edson Cavalcanti, S., Durcilene A., (2019). Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydrate Polymers. 213, 176–183.
  • [32] Patil, M.P., Singh, R.D., Koli, P.B., Patil, K.T., Jagdale, B.S., Tipare, A.R., Gun D., (2018). Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial Pathogenesis. 121, 184–189.
  • [33] Durán, N., Durán, M., Jesus, M.B. De, Seabra, A.B., Fávaro, W.J., Nakazato, G., (2015). Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomedicine: Nanotechnology, Biology, and Medicine. 12 (3), 789–799.
  • [34] Singh, P., Garg, A., Pandit, S., Mokkapati, V.R.S.S., (2018). Antimicrobial Effects of Biogenic Nanoparticles. Nanomaterials. 8 (12), 1–19.
  • [35] Gopinath, V., Priyadarshini, S., Loke, M.F., Arunkumar, J., Marsili, E., MubarakAli, D., Vadivelu, J., (2017). Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arabian Journal of Chemistry. 10 (8), 1107–1117.
  • [36] Eren, A., Baran, M.F, (2019). Green Synthesıs , Characterızatıon And Antımıcrobıal Actıvıty Of Sılver Nanopartıcles ( Agnps ) From Maıze ( Zea mays L .). Applıed Ecology and Envıronmental Research. 17 (2), 4097–4105.
  • [37] Emmanuel, R., Palanisamy, S., Chen, S., Chelladurai, K., Padmavathy, S., Saravanan, M., Fahad M.A, (2015). Antimicrobial ef fi cacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Materials Science & Engineering C. 56 374–379.
There are 37 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ayşe Baran 0000-0002-2317-0489

Publication Date March 30, 2021
Submission Date February 15, 2021
Published in Issue Year 2021

Cite

IEEE A. Baran, “Gümüş nano malzemelerin çevre dostu, hızlı sentezi ve biomedikal uygulamaları”, DÜMF MD, vol. 12, no. 2, pp. 329–336, 2021, doi: 10.24012/dumf.880878.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456