Research Article
BibTex RIS Cite
Year 2018, Volume: 9 Issue: 1, 61 - 72, 04.04.2018

Abstract

References

  • Ando, A., Takayama, Y., Yoshida, T., Ishikawa, R., & Honjo, K. (2008, 16-20 Dec. 2008). A high-efficiency class-F GaN HEMT power amplifier with a diode predistortion linearizer. 2008 Asia-Pacific Microwave Conference.
  • Ando, A., Takayama, Y., Yoshida, T., Ishikawa, R., & Honjo, K. (2009, 7-10 Dec. 2009). A predistortion linearizer for a class-F GaN HEMT power amplifier using two independently controlled diodes. 2009 Asia Pacific Microwave Conference.
  • Aparin, V. (2005). Linearization of CDMA Receiver Front-Ends. PhD Degree Thesis, University of California, San Diego.
  • Aryanian, I., Abdipour, A., & Mohammadi, A. (2016). Design, Simulation and Fabrication of a Wide Bandwidth Envelope Tracking Power Amplifier. Applied Computational Electromagnetics Society Journal, 31(10).
  • Auer, F., Schiller, S., & Kamper, M. (2016). Linearity and efficiency improvement using envelope tracking power amplifier. 2016 German Microwave Conference (GeMiC).
  • Chen, S., Wang, G., Cheng, Z., Qin, P., & Xue, Q. (2017). Adaptively Biased 60-GHz Doherty Power Amplifier in 65-nm CMOS. IEEE Microwave and Wireless Components Letters, 27(3), 296-298.
  • Chen, Y.-C., Chang, Y.-T., & Lu, H.-C. A K-Band Power Amplifier with Parasitic Diode Linearizer in 0.18-μm CMOS Process Using 1.8-V Supply Voltage. 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
  • Cho, Y., Moon, K., Kim, J., Park, B., & Kim, B. (2016). Linear Doherty power amplifier with adaptive bias circuit for average power-tracking. Microwave Symposium (IMS), 2016 IEEE MTT-S International.
  • Dawei, L., Xiaoqiang, X., Bo, Y., Ruimin, X., & Xuyang, Z. (2014, 5-7 Dec. 2014). Tunable diode-based predistortion linearizer for power amplifier with a phase expansion or compression at millimeter-wave frequency. 2014 IEEE International Conference on Communiction Problem-solving.
  • Fritzin, J. (2009). Power Amplifier Circuits in CMOS Technologies. PhD Degree Thesis, Linköpings university, Linkoping Studies in Science and Technology. (132)
  • Gecan, D., Gjertsen, K. M., & Olavsbråten, M. (2017). Novel Metric Describing Total Nonlinearity of Power Amplifier With a Corresponding Figure of Merit for Linearity Evaluation and Optimization. IEEE Microwave and Wireless Components Letters, 27(1), 85-87.
  • Gecan, D., Olavsbraten, M., & Gjertsen, K. M. (2016). Comprehensive investigation of a dynamic gate biasing technique for linearity improvement based on measurement of a 10 W GaN HEMT power amplifier. Telecommunications Forum (TELFOR), 2016 24th.
  • Gilabert, P. L., Montoro, G., Ruiz, N., & García, J. A. (2016). Adaptive Envelope Shaping for Low and Medium Power Amplifiers with Dynamic Supply. IEEE Microwave and Wireless Components Letters, 26(7), 513-515.
  • Juárez-Cázares, S., Meléndez-Cano, A., Cárdenas-Valdez, J., Galaviz-Aguilar, J., Vazquez-Lopez, C., Roblin, P., & Núñez-Pérez, J. (2016). FPGA-Based Modeling and Design Methodology of a Digital Pre-distortion System for Power Amplifier Linearization. Mechatronics, Electronics and Automotive Engineering (ICMEAE), 2016 International Conference on.
  • Kang, S., Baek, D., & Hong, S. (2017). A 5-GHz WLAN RF CMOS Power Amplifier With a Parallel-Cascoded Configuration and an Active Feedback Linearizer. IEEE Transactions on Microwave Theory and Techniques.
  • Kazuhisa, Y., Hifumi, N., Satoru, I., Yoshihiro, H., Masatoshi, N., & Yoji, I. (2006, 12-15 Dec. 2006). Series anti-parallel diode linearizer for class-B power amplifiers with a gain expansion. 2006 Asia-Pacific Microwave Conference.
  • Kim, H., Cho, H., Kim, M., Seo, M., Ham, J., Park, C.-S., Jung, S. (2013). Efficiency enhanced amplifier using a digitally-controlled dynamic bias switching circuit. Microw. Journal, 56(5), 106-120.
  • Kim, J. H., Kim, K. Y., Park, Y. H., Chung, Y. K., & Park, C. S. (2006, 17-19 Oct. 2006). A 2.4 GHz SiGe bipolar power amplifier with integrated diode linearizer for WLAN IEEE 802.11b/g applications. 2006 IEEE Radio and Wireless Symposium.
  • Lasser, G., Duffy, M., Olavsbråten, M., & Popović, Z. (2017). Gate control of a two-stage GaN MMIC amplifier for amplitude and phase linearization. Wireless and Microwave Technology Conference (WAMICON), 2017 IEEE 18th.
  • Lee, H., Kwon, J., Lim, W., Lee, W., Kang, H., Hwang, K. C., Yang, Y. (2017). Optimized Current of the Peaking Amplifier for Two-Stage Doherty Power Amplifier. IEEE Transactions on Microwave Theory and Techniques.
  • Olavsbråten, M., & Gecan, D. (2017). Bandwidth Reduction for Supply Modulated RF PAs Using Power Envelope Tracking. IEEE Microwave and Wireless Components Letters, 27(4), 374-376.
  • Pedro, J. C., & Carvalho, N. B. (2003). Intermodulation Distortion in Microwave and Wireless Circuits: ARTECH HOUSE.
  • Seth, S., Kwon, D. H., Venugopalan, S., Son, S. W., Zuo, Y., Bhagavatula, V., Cho, T. B. (2016). A Dynamically Biased Multiband 2G/3G/4G Cellular Transmitter in 28 nm CMOS. IEEE Journal of Solid-State Circuits, 51(5), 1096-1108.
  • Shi, B. (2016). Mixer Linearization Using Dynamic Bias Circuit with an Integrated Diode Linearizer. 2016 IEEE Region 10 Conference (TENCON) Proceedings of the International Conference.
  • Shmilovitz, D. (2005). On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Transactions on Power Delivery, 20(1), 526-528. doi: 10.1109/tpwrd.2004.839744
  • Şenel, B., Çağlar, M. F., & Genç, A. (2014). Effects of DC Bias Conditions to Performance of 2.4GHz Power Amplifier. IEEE 22. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Trabzon.
  • Türkel, B., & Caglar, M. F. Linearized 2.4 GHz Power Amplifier. Progress In Electromagnetics Research Symposium Proceedings, KL, MALAYSIA, March 27–30, 2012.
  • Uchida, Y., He, S., Yang, X., Liu, Q., & Yoshimasu, T. (2012, 21-23 Nov. 2012). 5-GHz band linear CMOS power amplifier IC with a novel integrated linearizer for WLAN applications. 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).
  • Xian, C., Roblin, P., Jongsoo, L., Young Gi, K., & Wan Rone, L. (2007, 5-8 Aug. 2007). A 3.5 GHz CMOS Doherty power amplifier with integrated diode linearizer targeted for WiMax applications. 2007 50th Midwest Symposium on Circuits and Systems.
  • Yamauchi, K., Mori, K., Nakayama, M., Mitsui, Y., & Takagi, T. (1997). A microwave miniaturized linearizer using a parallel diode with a bias feed resistance. IEEE Transactions on Microwave Theory and Techniques, 45(12), 2431-2435. doi: 10.1109/22.643856
  • Yu, C.-z., Hu, B.-x., Shang, X.-w., & Su, X.-b. (2016, 19-21 April 2016). A micro-strip millimeter wave predistortion linearizer with temperature compensation. 2016 IEEE International Vacuum Electronics Conference (IVEC).
  • Zhou, R., Xie, X., Yan, B., & Li, S. (2012, 5-8 May 2012). A novel diode-based predistortion linearizer for Ka-band power amplifier. 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT).

Paralel diyot doğrusallaştırıcılı 2.4 GHz güç yükselteci tasarımı

Year 2018, Volume: 9 Issue: 1, 61 - 72, 04.04.2018

Abstract

Bu çalışmada öncelikle 2.4 GHz frekansında ATF501p8 pseudomorfik yüksek elektron hareketli transistör (pYEHT) kullanılarak yüksek Çevrim Güç Kazancı (G), Güç Ekli Verim (GEV%), optimum giriş yansıma katsayısı (S11) ve çıkış yansıma katsayısı (S22) gibi tasarım parametrelerine sahip tek katlı A-sınıfı bir Güç Yükselteci (GY) tasarlanmıştır. GY’nin doğrusallık performansını arttırmak için, doğrusal olmayan Diyot Tabanlı (DT) bir doğrusallaştırma tekniği uygulanmış ve doğrusallaştırıcı devrenin eleman değerleri optimize edilmiştir. Tasarımı yapılmış olan GY’nin doğrusallık performansını artırmak için Paralel Diyot Doğrusallaştırıcı (PDD) devre elemanları optimize edilerek GY’ye uygulanmıştır. PDD devresinde HMPP-386X serisi HMPP-3860 Radyo Frekans (RF) PIN diyot kullanılmıştır. Çalışmada devre tasarım ve simülasyonları Keysight ADS yazılımı ile yapılmıştır. PDD devre optimizasyonu ise ADS simülatörü içinde yer alan Benzetimli Tavlama (BT) optimizasyon algoritması ile yapılmıştır. Doğrusallık performansı artırılmış PDD’li GY 15 dBm giriş gücü (Pgiriş) değerinde 10.901 dB G ile 25.901 dBm’lik çıkış gücü (Pçıkış) ve %27.906 GEV performansına sahiptir. Ayrıca tasarlanan PDD’li GY -8.348 dB’lik S11 ve 13.715 dB’lik S22 performansına sahiptir.

Çalışmada PDD devresinin yükselteç doğrusallık performansını artırdığı Genlik-Genlik (G-G), Genlik-Faz (G-F) ve GÇ karşılaştırmalı grafikleri ile detaylı olarak gösterilmiştir. PDD’siz GY 21.36 dBm Üçüncü Derece Giriş Kesim Noktası (GKN3), 32.74dBm Üçüncü Derece Çıkış Kesim Noktası (ÇKN3), -18.742 dBc Üçüncü Derece Modülasyonlar Arası Bozunum (MAB3) değerlerine sahipken PDD’li GY ise 25.38 dBm GKN3, 35.54 dBm ÇKN3, -26.702 dBc MAB3 değerlerine sahiptir. Elde edilen karşılaştırmalı simülasyon sonuçlarına göre PDD devresinin pYEHT A-sınıfı tek katlı 2.4 GHz GY’nin doğrusallık performansını artırdığı görülmüştür

References

  • Ando, A., Takayama, Y., Yoshida, T., Ishikawa, R., & Honjo, K. (2008, 16-20 Dec. 2008). A high-efficiency class-F GaN HEMT power amplifier with a diode predistortion linearizer. 2008 Asia-Pacific Microwave Conference.
  • Ando, A., Takayama, Y., Yoshida, T., Ishikawa, R., & Honjo, K. (2009, 7-10 Dec. 2009). A predistortion linearizer for a class-F GaN HEMT power amplifier using two independently controlled diodes. 2009 Asia Pacific Microwave Conference.
  • Aparin, V. (2005). Linearization of CDMA Receiver Front-Ends. PhD Degree Thesis, University of California, San Diego.
  • Aryanian, I., Abdipour, A., & Mohammadi, A. (2016). Design, Simulation and Fabrication of a Wide Bandwidth Envelope Tracking Power Amplifier. Applied Computational Electromagnetics Society Journal, 31(10).
  • Auer, F., Schiller, S., & Kamper, M. (2016). Linearity and efficiency improvement using envelope tracking power amplifier. 2016 German Microwave Conference (GeMiC).
  • Chen, S., Wang, G., Cheng, Z., Qin, P., & Xue, Q. (2017). Adaptively Biased 60-GHz Doherty Power Amplifier in 65-nm CMOS. IEEE Microwave and Wireless Components Letters, 27(3), 296-298.
  • Chen, Y.-C., Chang, Y.-T., & Lu, H.-C. A K-Band Power Amplifier with Parasitic Diode Linearizer in 0.18-μm CMOS Process Using 1.8-V Supply Voltage. 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
  • Cho, Y., Moon, K., Kim, J., Park, B., & Kim, B. (2016). Linear Doherty power amplifier with adaptive bias circuit for average power-tracking. Microwave Symposium (IMS), 2016 IEEE MTT-S International.
  • Dawei, L., Xiaoqiang, X., Bo, Y., Ruimin, X., & Xuyang, Z. (2014, 5-7 Dec. 2014). Tunable diode-based predistortion linearizer for power amplifier with a phase expansion or compression at millimeter-wave frequency. 2014 IEEE International Conference on Communiction Problem-solving.
  • Fritzin, J. (2009). Power Amplifier Circuits in CMOS Technologies. PhD Degree Thesis, Linköpings university, Linkoping Studies in Science and Technology. (132)
  • Gecan, D., Gjertsen, K. M., & Olavsbråten, M. (2017). Novel Metric Describing Total Nonlinearity of Power Amplifier With a Corresponding Figure of Merit for Linearity Evaluation and Optimization. IEEE Microwave and Wireless Components Letters, 27(1), 85-87.
  • Gecan, D., Olavsbraten, M., & Gjertsen, K. M. (2016). Comprehensive investigation of a dynamic gate biasing technique for linearity improvement based on measurement of a 10 W GaN HEMT power amplifier. Telecommunications Forum (TELFOR), 2016 24th.
  • Gilabert, P. L., Montoro, G., Ruiz, N., & García, J. A. (2016). Adaptive Envelope Shaping for Low and Medium Power Amplifiers with Dynamic Supply. IEEE Microwave and Wireless Components Letters, 26(7), 513-515.
  • Juárez-Cázares, S., Meléndez-Cano, A., Cárdenas-Valdez, J., Galaviz-Aguilar, J., Vazquez-Lopez, C., Roblin, P., & Núñez-Pérez, J. (2016). FPGA-Based Modeling and Design Methodology of a Digital Pre-distortion System for Power Amplifier Linearization. Mechatronics, Electronics and Automotive Engineering (ICMEAE), 2016 International Conference on.
  • Kang, S., Baek, D., & Hong, S. (2017). A 5-GHz WLAN RF CMOS Power Amplifier With a Parallel-Cascoded Configuration and an Active Feedback Linearizer. IEEE Transactions on Microwave Theory and Techniques.
  • Kazuhisa, Y., Hifumi, N., Satoru, I., Yoshihiro, H., Masatoshi, N., & Yoji, I. (2006, 12-15 Dec. 2006). Series anti-parallel diode linearizer for class-B power amplifiers with a gain expansion. 2006 Asia-Pacific Microwave Conference.
  • Kim, H., Cho, H., Kim, M., Seo, M., Ham, J., Park, C.-S., Jung, S. (2013). Efficiency enhanced amplifier using a digitally-controlled dynamic bias switching circuit. Microw. Journal, 56(5), 106-120.
  • Kim, J. H., Kim, K. Y., Park, Y. H., Chung, Y. K., & Park, C. S. (2006, 17-19 Oct. 2006). A 2.4 GHz SiGe bipolar power amplifier with integrated diode linearizer for WLAN IEEE 802.11b/g applications. 2006 IEEE Radio and Wireless Symposium.
  • Lasser, G., Duffy, M., Olavsbråten, M., & Popović, Z. (2017). Gate control of a two-stage GaN MMIC amplifier for amplitude and phase linearization. Wireless and Microwave Technology Conference (WAMICON), 2017 IEEE 18th.
  • Lee, H., Kwon, J., Lim, W., Lee, W., Kang, H., Hwang, K. C., Yang, Y. (2017). Optimized Current of the Peaking Amplifier for Two-Stage Doherty Power Amplifier. IEEE Transactions on Microwave Theory and Techniques.
  • Olavsbråten, M., & Gecan, D. (2017). Bandwidth Reduction for Supply Modulated RF PAs Using Power Envelope Tracking. IEEE Microwave and Wireless Components Letters, 27(4), 374-376.
  • Pedro, J. C., & Carvalho, N. B. (2003). Intermodulation Distortion in Microwave and Wireless Circuits: ARTECH HOUSE.
  • Seth, S., Kwon, D. H., Venugopalan, S., Son, S. W., Zuo, Y., Bhagavatula, V., Cho, T. B. (2016). A Dynamically Biased Multiband 2G/3G/4G Cellular Transmitter in 28 nm CMOS. IEEE Journal of Solid-State Circuits, 51(5), 1096-1108.
  • Shi, B. (2016). Mixer Linearization Using Dynamic Bias Circuit with an Integrated Diode Linearizer. 2016 IEEE Region 10 Conference (TENCON) Proceedings of the International Conference.
  • Shmilovitz, D. (2005). On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Transactions on Power Delivery, 20(1), 526-528. doi: 10.1109/tpwrd.2004.839744
  • Şenel, B., Çağlar, M. F., & Genç, A. (2014). Effects of DC Bias Conditions to Performance of 2.4GHz Power Amplifier. IEEE 22. Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Trabzon.
  • Türkel, B., & Caglar, M. F. Linearized 2.4 GHz Power Amplifier. Progress In Electromagnetics Research Symposium Proceedings, KL, MALAYSIA, March 27–30, 2012.
  • Uchida, Y., He, S., Yang, X., Liu, Q., & Yoshimasu, T. (2012, 21-23 Nov. 2012). 5-GHz band linear CMOS power amplifier IC with a novel integrated linearizer for WLAN applications. 2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).
  • Xian, C., Roblin, P., Jongsoo, L., Young Gi, K., & Wan Rone, L. (2007, 5-8 Aug. 2007). A 3.5 GHz CMOS Doherty power amplifier with integrated diode linearizer targeted for WiMax applications. 2007 50th Midwest Symposium on Circuits and Systems.
  • Yamauchi, K., Mori, K., Nakayama, M., Mitsui, Y., & Takagi, T. (1997). A microwave miniaturized linearizer using a parallel diode with a bias feed resistance. IEEE Transactions on Microwave Theory and Techniques, 45(12), 2431-2435. doi: 10.1109/22.643856
  • Yu, C.-z., Hu, B.-x., Shang, X.-w., & Su, X.-b. (2016, 19-21 April 2016). A micro-strip millimeter wave predistortion linearizer with temperature compensation. 2016 IEEE International Vacuum Electronics Conference (IVEC).
  • Zhou, R., Xie, X., Yan, B., & Li, S. (2012, 5-8 May 2012). A novel diode-based predistortion linearizer for Ka-band power amplifier. 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT).
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Bilge Şenel

Publication Date April 4, 2018
Submission Date July 31, 2017
Published in Issue Year 2018 Volume: 9 Issue: 1

Cite

IEEE B. Şenel, “Paralel diyot doğrusallaştırıcılı 2.4 GHz güç yükselteci tasarımı”, DUJE, vol. 9, no. 1, pp. 61–72, 2018.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456