Research Article
BibTex RIS Cite

Al/Nigrosin/p-Si Yapıların Fabrikasyonu ve Temel Diyot Parametrelerinin Hesaplanması

Year 2018, Volume: 9 Issue: 2, 689 - 700, 25.09.2018

Abstract

Bu çalışmada π bağları açısından zengin organik molekülün (Nigrosin (NIG)) optik özellikleri UV-Vis yöntemiyle belirlendi. Cam altlık üzerinde damlatma yöntemi ile büyütülen NIG ince tabakasının direkt yasak enerji değerleri; 1,42 eV (Q bandı) ve 2,94 eV (B bandı) olarak rapor edildi. Oluşturulan referans Al/p-Si ve Al/NIG/p-Si Metal/Organik aratabaka/Yarıiletken (MIS) yapılarının I-V ölçümleri sonunda tüm yapıların doğrultucu özelliğe sahip oldukları gözlemlendi. Oda sıcaklığında alınan I-V ölçümleri kullanılarak yapıların karakteristik diyot özellikleri belirlendi. Burada Al/NIG/p-Si diyotunun kapasitör özelliği, C-V ölçümleri alınarak incelendi ve yapılan hesaplamalar sonucunda bazı diyot parametreleri elde edildi. Elde edilen sonuçlar, π bağları açısından zengin olan NIG gibi organik malzemelerin elektronik sahasında kullanılabileceğini gösterdi.

References

  • Akkılıç K., Ocak Y.S., Kılıçoğlu T., İlhan S., Temel H., (2010). Calculation of current–voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode, Current Applied Physics, 10, 337-341.
  • Antohe S., Tomozeiu N., Gogonea S., (1991). Properties oft he organic-on-inorganic semiconductor barrier contact diodes In/PTCDI/p-Si and Ag/CuPc/p-Si, Phys. Stat. Sol. (a), 125, 397-408.
  • Aslan F., Güllü Ö., Ocak Y. S., Rüzgar Ş., Tombak A., Özaydın C., Pakma O., Arsel İ., (2015). Organik arayüzey tabakalı Al/CuPc /p-Inp kontakların fabrikasyonu ve elektriksel parametrelerinin incelenmesi, Batman University Journal of Life Sciences, 5, 263-275.
  • Cakar M., Temirci C., Turut A., (2004). The Schottky barrier height of the rectifying Cu/pyronine-B/p-Si, Au/pyronine-B/p-Si, Sn/pyronine-B/p-Si and Al/pyronine-B/p-Si contacts, Synthetic Met., 142, 177-180.
  • Card H. C., Rhoderick E. H., (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes, J. Phys. D: Appl. Phys., 4, 1589-1601.
  • Cheung S.K., Cheung N.W., (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics, Appl Phys Lett., 49, 85-.87.
  • El-Nahass M. M., Zeyada H.M., Aziz M.S., El-Ghamaz N.A., (2005). Carrier transport mechanisms and photovoltaic properties of Au/p-ZnPc/p-Si solar cell, Solid-State Electronics, 49, 1314-1319.
  • El-Nahass M. M., Zeyada H. M., Abd-El-Rahman K.F., Darwish A.A.A., (2007a). Fabrication and characterization of 4-tricyanovinyl-N,N-diethylaniline/p-silicon hybrid organic–inorganic solar cells, Solar Energy Mater. Sol. Cells, 91, 1120-1126.
  • El-Nahass M.M.,, Abd-El-Rahman K.F., Darwish A.A.A., (2007b). Fabrication and electrical characterization of p-NiPc/n-Si heterojunction, Microelectronics Journal, 38, 91-95.
  • Farag A.A.M., El-Shazly E.A.A., Rafea M.A., Ibrahim A., (2009). Optical, electrical and photovoltaic characteristics of organic semiconductor based on oxazine/n-Si heterojunction, Solar Energy Materials & Solar Cells, 93, 1853-1859.
  • Fonash, S. J., (1983). A reevaluation of the meaning of capacitance plots for Schottky‐barrier‐type diodes, J. Appl. Phys., 54, 1966-1975.
  • Forrest S.R., Kaplan M.L., Schmidt P.H., Feldmann W.L., Yanowski E., (1982). Organic-on-inorganic semiconductor contact barrier devices, Appl. Phys. Lett. 41, 90-93.
  • Forrest S.R., Schmidt P.H., (1986). Semiconductor analysis using organic-on-inorganic contact barriers. I. Theory of the effects of surface states on diode potential and ac admittance, J. Appl. Phys., 59, 513-525.
  • Güllü Ö., Türüt A., (2008). Photovoltaic and electronic properties of quercetin/p-InP solar cells, Solar Energy Materials&Solar cells, 92, 1205-1210.
  • Gullu O., (2010a). Ultrahigh (100%) barrier modification of n-InP Schottky diode by DNA biopolymer nanofilms, Microelectron Eng., 87, 648-651.
  • Gullu O., Asubay S., Biber M., Kilicoglu T., Turut A., (2010b). Electrical properties of safranine T/p-Si organic/inorganic semiconductor devices, Eur. Phys. J-Appl Phys., 50, 10401.
  • Güllü Ö., Kılıçoğlu T., Türüt A., (2010c). Electronic properties of the metal/organic interlayer/inorganic semiconductor sandwich device, Journal of Physics and Chemistry of Solids, 71, 351-356.
  • Hamidi Ş., (2011). Organik yarıiletken/İnorganik yarıiletken heteroeklem diyodunun elektriksel özelliklerinin incelenmesi, Yüksek Lisans Tezi, Dicle Ü. Fen Bilimleri Enstitüsü, Diyarbakır.
  • Janardhanam V., Jyothi I., Lee J-H., Kim J.Y., Rajagopal Reddy V., Choi C.J., (2014). Electrical Properties and Carrier Transport Mechanism of Au/n-GaN Schottky Contact Modified Using a Copper Pthalocyanine (CuPc) Interlayer, Materials Transactions, 55, 758-762.
  • Kampen T.U., Park S., Zahn D.R.T., (2002). Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer, Applied Surface Science, 190, 461-466.
  • Kiliçoǧlu T., (2008). Effect of an organic compound (Methyl Red) interfacial layer on the calculation of characteristic parameters of an Al/Methyl Red/p-Si sandwich Schottky barrier diode, Thin Solid Films, 516, 967-970. Norde H., (1979). A modified forward I-V plot for Schottky diodes with high series resistance, Journal of Applied Physics, 50, 5052-5053.
  • Ocak Y.S., Kulakci M., Kiliçoǧlu T., Turan R., Akkiliç K., (2009). Current–voltage and capacitance–voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode, Synthetic Metals, 159, 1603-1607.
  • Onganer Y., Tuzemen S., (1996). High barrier metallic polymer/p-type silicon Schottky diodes, Solid-state electronics, 39, 677-680.
  • Özden Ş., Tozlu C., and Pakma O., (2016). Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol)/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method, International Journal of Photoenergy, 2016, 6157905.
  • Rhoderick E.H., Williams R.H., (1988). Metal-Semiconductor Contacts, Clarendon Press, Second Edition, Oxford.
  • Shaw J. M., Seidler P. F., (2001). Organic electronics, IBM J. Res. Dev., 45, 3-10.
  • Sze S.M., Ng K.K., (2007). Physics of Semiconductor Devices, third ed., Wiley.
  • Vearey-Roberts A.R., Evans D.A., (2005). Modification of GaAs Schottky diodes by thin organic interlayers, Appl. Phys. Lett., 86, 072105.
  • Yağlıoğlu E., Tüzün Özmen Ö., (2014). Au/P3HT:PCBM/n-Si (MPY) Schottky Bariyer Diyotun Bazı Elektriksel Parametrelerinin Frekansa Bağlı Kapasitans-Voltaj (C-V) Karakteristikleri ile İncelenmesi, Journal of Düzce University Sci. and Tech., 2, 227-234.
  • Yakuphanoglu F., (2007a). Electrical characterization and Interface State Density Properties of the ITO/C70/Au Schottky Diode, J. Phys. Chem. C, 111, 1505-1507.
  • Yakuphanoglu F., Kandaz M., Yaraşır M. N., Şenkal B.F., (2007b). Electrical transport and optical properties of an organic semiconductor based on phthalocyanine, Physica B, 393, 235-238.
  • Yakuphanoglu F., (2007c). Photovoltaic properties of hybrid organic/inorganic semiconductor photodiode, Synthetic Metals, 157, 859-862.
  • Yakuphanoglu F., Ocak Y.S., Kilicoglu T., Farooq W.A., (2011). Interface control and photovoltaic properties of n-type silicon/metal junction by organic dye, Microelectronic Eng., 88, 2951-2954.
Year 2018, Volume: 9 Issue: 2, 689 - 700, 25.09.2018

Abstract

References

  • Akkılıç K., Ocak Y.S., Kılıçoğlu T., İlhan S., Temel H., (2010). Calculation of current–voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode, Current Applied Physics, 10, 337-341.
  • Antohe S., Tomozeiu N., Gogonea S., (1991). Properties oft he organic-on-inorganic semiconductor barrier contact diodes In/PTCDI/p-Si and Ag/CuPc/p-Si, Phys. Stat. Sol. (a), 125, 397-408.
  • Aslan F., Güllü Ö., Ocak Y. S., Rüzgar Ş., Tombak A., Özaydın C., Pakma O., Arsel İ., (2015). Organik arayüzey tabakalı Al/CuPc /p-Inp kontakların fabrikasyonu ve elektriksel parametrelerinin incelenmesi, Batman University Journal of Life Sciences, 5, 263-275.
  • Cakar M., Temirci C., Turut A., (2004). The Schottky barrier height of the rectifying Cu/pyronine-B/p-Si, Au/pyronine-B/p-Si, Sn/pyronine-B/p-Si and Al/pyronine-B/p-Si contacts, Synthetic Met., 142, 177-180.
  • Card H. C., Rhoderick E. H., (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes, J. Phys. D: Appl. Phys., 4, 1589-1601.
  • Cheung S.K., Cheung N.W., (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics, Appl Phys Lett., 49, 85-.87.
  • El-Nahass M. M., Zeyada H.M., Aziz M.S., El-Ghamaz N.A., (2005). Carrier transport mechanisms and photovoltaic properties of Au/p-ZnPc/p-Si solar cell, Solid-State Electronics, 49, 1314-1319.
  • El-Nahass M. M., Zeyada H. M., Abd-El-Rahman K.F., Darwish A.A.A., (2007a). Fabrication and characterization of 4-tricyanovinyl-N,N-diethylaniline/p-silicon hybrid organic–inorganic solar cells, Solar Energy Mater. Sol. Cells, 91, 1120-1126.
  • El-Nahass M.M.,, Abd-El-Rahman K.F., Darwish A.A.A., (2007b). Fabrication and electrical characterization of p-NiPc/n-Si heterojunction, Microelectronics Journal, 38, 91-95.
  • Farag A.A.M., El-Shazly E.A.A., Rafea M.A., Ibrahim A., (2009). Optical, electrical and photovoltaic characteristics of organic semiconductor based on oxazine/n-Si heterojunction, Solar Energy Materials & Solar Cells, 93, 1853-1859.
  • Fonash, S. J., (1983). A reevaluation of the meaning of capacitance plots for Schottky‐barrier‐type diodes, J. Appl. Phys., 54, 1966-1975.
  • Forrest S.R., Kaplan M.L., Schmidt P.H., Feldmann W.L., Yanowski E., (1982). Organic-on-inorganic semiconductor contact barrier devices, Appl. Phys. Lett. 41, 90-93.
  • Forrest S.R., Schmidt P.H., (1986). Semiconductor analysis using organic-on-inorganic contact barriers. I. Theory of the effects of surface states on diode potential and ac admittance, J. Appl. Phys., 59, 513-525.
  • Güllü Ö., Türüt A., (2008). Photovoltaic and electronic properties of quercetin/p-InP solar cells, Solar Energy Materials&Solar cells, 92, 1205-1210.
  • Gullu O., (2010a). Ultrahigh (100%) barrier modification of n-InP Schottky diode by DNA biopolymer nanofilms, Microelectron Eng., 87, 648-651.
  • Gullu O., Asubay S., Biber M., Kilicoglu T., Turut A., (2010b). Electrical properties of safranine T/p-Si organic/inorganic semiconductor devices, Eur. Phys. J-Appl Phys., 50, 10401.
  • Güllü Ö., Kılıçoğlu T., Türüt A., (2010c). Electronic properties of the metal/organic interlayer/inorganic semiconductor sandwich device, Journal of Physics and Chemistry of Solids, 71, 351-356.
  • Hamidi Ş., (2011). Organik yarıiletken/İnorganik yarıiletken heteroeklem diyodunun elektriksel özelliklerinin incelenmesi, Yüksek Lisans Tezi, Dicle Ü. Fen Bilimleri Enstitüsü, Diyarbakır.
  • Janardhanam V., Jyothi I., Lee J-H., Kim J.Y., Rajagopal Reddy V., Choi C.J., (2014). Electrical Properties and Carrier Transport Mechanism of Au/n-GaN Schottky Contact Modified Using a Copper Pthalocyanine (CuPc) Interlayer, Materials Transactions, 55, 758-762.
  • Kampen T.U., Park S., Zahn D.R.T., (2002). Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer, Applied Surface Science, 190, 461-466.
  • Kiliçoǧlu T., (2008). Effect of an organic compound (Methyl Red) interfacial layer on the calculation of characteristic parameters of an Al/Methyl Red/p-Si sandwich Schottky barrier diode, Thin Solid Films, 516, 967-970. Norde H., (1979). A modified forward I-V plot for Schottky diodes with high series resistance, Journal of Applied Physics, 50, 5052-5053.
  • Ocak Y.S., Kulakci M., Kiliçoǧlu T., Turan R., Akkiliç K., (2009). Current–voltage and capacitance–voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode, Synthetic Metals, 159, 1603-1607.
  • Onganer Y., Tuzemen S., (1996). High barrier metallic polymer/p-type silicon Schottky diodes, Solid-state electronics, 39, 677-680.
  • Özden Ş., Tozlu C., and Pakma O., (2016). Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol)/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method, International Journal of Photoenergy, 2016, 6157905.
  • Rhoderick E.H., Williams R.H., (1988). Metal-Semiconductor Contacts, Clarendon Press, Second Edition, Oxford.
  • Shaw J. M., Seidler P. F., (2001). Organic electronics, IBM J. Res. Dev., 45, 3-10.
  • Sze S.M., Ng K.K., (2007). Physics of Semiconductor Devices, third ed., Wiley.
  • Vearey-Roberts A.R., Evans D.A., (2005). Modification of GaAs Schottky diodes by thin organic interlayers, Appl. Phys. Lett., 86, 072105.
  • Yağlıoğlu E., Tüzün Özmen Ö., (2014). Au/P3HT:PCBM/n-Si (MPY) Schottky Bariyer Diyotun Bazı Elektriksel Parametrelerinin Frekansa Bağlı Kapasitans-Voltaj (C-V) Karakteristikleri ile İncelenmesi, Journal of Düzce University Sci. and Tech., 2, 227-234.
  • Yakuphanoglu F., (2007a). Electrical characterization and Interface State Density Properties of the ITO/C70/Au Schottky Diode, J. Phys. Chem. C, 111, 1505-1507.
  • Yakuphanoglu F., Kandaz M., Yaraşır M. N., Şenkal B.F., (2007b). Electrical transport and optical properties of an organic semiconductor based on phthalocyanine, Physica B, 393, 235-238.
  • Yakuphanoglu F., (2007c). Photovoltaic properties of hybrid organic/inorganic semiconductor photodiode, Synthetic Metals, 157, 859-862.
  • Yakuphanoglu F., Ocak Y.S., Kilicoglu T., Farooq W.A., (2011). Interface control and photovoltaic properties of n-type silicon/metal junction by organic dye, Microelectronic Eng., 88, 2951-2954.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ömer Güllü This is me 0000-0002-3785-6190

Publication Date September 25, 2018
Submission Date December 13, 2017
Published in Issue Year 2018 Volume: 9 Issue: 2

Cite

IEEE Ö. Güllü, “Al/Nigrosin/p-Si Yapıların Fabrikasyonu ve Temel Diyot Parametrelerinin Hesaplanması”, DUJE, vol. 9, no. 2, pp. 689–700, 2018.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456