Research Article
BibTex RIS Cite

Asidik dağlama prosesinde farklı HCl/H2SO4 oranının titanyumun yüzey morfolojisi ve pürüzlülüğüne etkisi

Year 2019, Volume: 10 Issue: 3, 999 - 1007, 29.09.2019
https://doi.org/10.24012/dumf.450560

Abstract

Titanyum implantların canlı kemik dokusu ile olan etkileşiminde önemli
rol oynayan faktörlerden en önemlisi yüzey özellikleridir. İmplantın yüzey morfolojisi
ve pürüzlülük derecesi ise bu özelliklerin başında gelmektedir. Bu çalışmanın
amacı, farklı HCl/H2SO4 oranlarına sahip asit çözeltisi
içinde gerçekleştirilen dağlama işleminin, kumlanmış ve kumlanmamış saf titanyumun
(Cp-Ti, Gr2) yüzey özelliklerine olan etkilerinin incelenmesidir. Beş farklı karışım
oranında yapılan dağlama prosesi 60
°C
sıcaklıkta 10 dakika boyunca gerçekleştirilmiştir. İşlem gören titanyum
numunelerin yüzey morfolojisi taramalı elektron mikroskobu (SEM) ile analiz
edilmiştir. Dağlama sonucu titanyum yüzeylerin pürüzlülük değerleri ise
profilometre ile belirlenmiştir. HCl/H2SO4 oranındaki
değişim titanyumda farklı yüzey morfolojilerinin oluşumuna yol açmıştır.
İmplantın mekanik stabilitesinde önemli rol oynayan farklı boyut ve şekillerde
mikro çukurların oluşumu gözlemlenmiştir. Kumlanmış titanyum yüzeylerde dağlama
sonrası kumlanmamış morfolojilere benzer yapıların oluştuğu tespit edilmiştir.
Ancak yüzey pürüzlülüğü noktasında kumlama işleminin bariz bir etkisinin olduğu
da görülmüştür. Dağlama ile yüzeyde oluşan pürüzlülük değeri ortalama Ra=0,5
mm iken, kumlama+dağlama işlemi sonucu bu değer Ra=2 mm’ye doğru arttığı tespit edilmiştir.

References

  • Abron, A., Hopfensperger, M., Thompson, J. ve Cooper, L.F., (2001). Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model, Journal of Prosthetic Dentistry, 85,1, 40-46.
  • Aparicio, C., Gil, F.J., Fonseca, C., Barbosa, M. ve Planell, J.A., (2003). Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications, Biomaterials, 24, 2, 263-273.
  • Bacchelli, B., Giavaresi, G., Franchi, M., Martini, D., De Pasquale, V., Trirè, A. ve Ruggeri, A., (2009). Influence of a zirconia sandblasting treated surface on peri-implant bone healing: an experimental study in sheep, Acta biomaterialia, 5, 6, 2246-2257.
  • Ban, S., Iwaya, Y., Kono, H. ve Sato, H., (2006). Surface modification of titanium by etching in concentrated sulfuric acid, Dental Materials, 22, 12, 1115-1120.
  • Conforto, E., Caillard, D., Aronsson, B. O. ve Descouts, P., (2002). Electron microscopy on titanium implants for bone replacement after “SLA” surface treatment, European Cells and Materials, 3 (Supplement 1), 9-10.
  • Gittens, R.A., McLachlan, T., Olivares- Navarrete, R., Cai, Y., Berner, S., Tannenbaum, R. ve Boyan, B.D., (2011). The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 32, 13, 3395- 3403.
  • Guo, C. Y., Matinlinna, J.P., Tsoi, J.K.H. ve Tang, A.T.H., (2015). Residual Contaminations of Silicon-Based Glass, Alumina and Aluminum Grits on a Titanium Surface After Sandblasting. Silicon, 1-8.
  • Hung, K.Y., Lin, Y.C. ve Feng, H.P., (2017). The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials. Materials, 10, 10, 1164.
  • Kim, H., Choi, S.H., Ryu, J.J., Koh, S.Y., Park, J.H. ve Lee, I.S., (2008). The biocompatibility of SLA-treated titanium implants. Biomedical Materials, 3, 2, 025011.
  • Le Guéhennec, L., Soueidan, A., Layrolle, P. ve Amouriq, Y., (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental materials, 23, 7, 844-854.
  • Liu, X., Chu, P.K. ve Ding, C., (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47, 3-4, 49-121.
  • Massaro, C., Rotolo, P., De Riccardis, F., Milella, E., Napoli, A., Wieland, M. ve Brunette, D.M., (2002). Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 13, 6, 535- 548.
  • McCracken, M., (1999). Dental implant materials: commercially pure titanium and titanium alloys, Journal of prosthodontics, 8, 1, 40-43.
  • Park, J.Y. ve Davies, J.E., (2000). Red blood cell and platelet interactions with titanium implant surfaces. Clinical oral implants research, 11, 6, 530-539.
  • Park, J.W., Jang, I.S. ve Suh, J.Y., (2008). Bone response to endosseous titanium implants surface‐modified by blasting and chemical treatment: A histomorphometric study in the rabbit femur, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84, 2, 400-407.
  • Patil, P.S., ve Bhongade, M.L., (2016). Dental Implant Surface Modifications: A Review. IOSR Journal of Dental and Medical Sciences 15, 10, 132-14.
  • Perrin, D., Szmukler‐Moncler, S., Echikou, C., Pointaire, P. ve Bernard, J.P., (2002). Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clinical oral implants research, 13, 5, 465-469.
  • Schweikl, H., Müller, R., Englert, C., Hiller, K.A., Kujat, R., Nerlich, M. ve Schmalz, G,. (2007). Proliferation of osteoblasts and fibroblasts on model surfaces of varying roughness and surface chemistry, Journal of Materials Science: Materials in Medicine, 18, 10, 1895-1905.
  • Wennerberg A, Albrektsson T, Albrektsson B, Krol J.J., (1996). Histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implant Res. 6, 24- 30.
  • Wong, M., Eulenberger, J., Schenk, R. ve Hunziker, E., (1995). Effect of surface topology on the osseointegration of implant materials in trabecular bone, Journal of Biomedical Materials Research Part A, 29, 12, 1567-1575.
  • Yang, G.L., He, F.M., Yang, X.F., Wang, X.X. ve Zhao, S.F. (2008). Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 106, 4, 516-524.
Year 2019, Volume: 10 Issue: 3, 999 - 1007, 29.09.2019
https://doi.org/10.24012/dumf.450560

Abstract

References

  • Abron, A., Hopfensperger, M., Thompson, J. ve Cooper, L.F., (2001). Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model, Journal of Prosthetic Dentistry, 85,1, 40-46.
  • Aparicio, C., Gil, F.J., Fonseca, C., Barbosa, M. ve Planell, J.A., (2003). Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications, Biomaterials, 24, 2, 263-273.
  • Bacchelli, B., Giavaresi, G., Franchi, M., Martini, D., De Pasquale, V., Trirè, A. ve Ruggeri, A., (2009). Influence of a zirconia sandblasting treated surface on peri-implant bone healing: an experimental study in sheep, Acta biomaterialia, 5, 6, 2246-2257.
  • Ban, S., Iwaya, Y., Kono, H. ve Sato, H., (2006). Surface modification of titanium by etching in concentrated sulfuric acid, Dental Materials, 22, 12, 1115-1120.
  • Conforto, E., Caillard, D., Aronsson, B. O. ve Descouts, P., (2002). Electron microscopy on titanium implants for bone replacement after “SLA” surface treatment, European Cells and Materials, 3 (Supplement 1), 9-10.
  • Gittens, R.A., McLachlan, T., Olivares- Navarrete, R., Cai, Y., Berner, S., Tannenbaum, R. ve Boyan, B.D., (2011). The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 32, 13, 3395- 3403.
  • Guo, C. Y., Matinlinna, J.P., Tsoi, J.K.H. ve Tang, A.T.H., (2015). Residual Contaminations of Silicon-Based Glass, Alumina and Aluminum Grits on a Titanium Surface After Sandblasting. Silicon, 1-8.
  • Hung, K.Y., Lin, Y.C. ve Feng, H.P., (2017). The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials. Materials, 10, 10, 1164.
  • Kim, H., Choi, S.H., Ryu, J.J., Koh, S.Y., Park, J.H. ve Lee, I.S., (2008). The biocompatibility of SLA-treated titanium implants. Biomedical Materials, 3, 2, 025011.
  • Le Guéhennec, L., Soueidan, A., Layrolle, P. ve Amouriq, Y., (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental materials, 23, 7, 844-854.
  • Liu, X., Chu, P.K. ve Ding, C., (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports, 47, 3-4, 49-121.
  • Massaro, C., Rotolo, P., De Riccardis, F., Milella, E., Napoli, A., Wieland, M. ve Brunette, D.M., (2002). Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of Materials Science: Materials in Medicine, 13, 6, 535- 548.
  • McCracken, M., (1999). Dental implant materials: commercially pure titanium and titanium alloys, Journal of prosthodontics, 8, 1, 40-43.
  • Park, J.Y. ve Davies, J.E., (2000). Red blood cell and platelet interactions with titanium implant surfaces. Clinical oral implants research, 11, 6, 530-539.
  • Park, J.W., Jang, I.S. ve Suh, J.Y., (2008). Bone response to endosseous titanium implants surface‐modified by blasting and chemical treatment: A histomorphometric study in the rabbit femur, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84, 2, 400-407.
  • Patil, P.S., ve Bhongade, M.L., (2016). Dental Implant Surface Modifications: A Review. IOSR Journal of Dental and Medical Sciences 15, 10, 132-14.
  • Perrin, D., Szmukler‐Moncler, S., Echikou, C., Pointaire, P. ve Bernard, J.P., (2002). Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clinical oral implants research, 13, 5, 465-469.
  • Schweikl, H., Müller, R., Englert, C., Hiller, K.A., Kujat, R., Nerlich, M. ve Schmalz, G,. (2007). Proliferation of osteoblasts and fibroblasts on model surfaces of varying roughness and surface chemistry, Journal of Materials Science: Materials in Medicine, 18, 10, 1895-1905.
  • Wennerberg A, Albrektsson T, Albrektsson B, Krol J.J., (1996). Histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implant Res. 6, 24- 30.
  • Wong, M., Eulenberger, J., Schenk, R. ve Hunziker, E., (1995). Effect of surface topology on the osseointegration of implant materials in trabecular bone, Journal of Biomedical Materials Research Part A, 29, 12, 1567-1575.
  • Yang, G.L., He, F.M., Yang, X.F., Wang, X.X. ve Zhao, S.F. (2008). Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 106, 4, 516-524.
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Tuncay Dikici 0000-0002-7004-9788

Publication Date September 29, 2019
Submission Date August 3, 2018
Published in Issue Year 2019 Volume: 10 Issue: 3

Cite

IEEE T. Dikici, “Asidik dağlama prosesinde farklı HCl/H2SO4 oranının titanyumun yüzey morfolojisi ve pürüzlülüğüne etkisi”, DUJE, vol. 10, no. 3, pp. 999–1007, 2019, doi: 10.24012/dumf.450560.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456