Research Article
BibTex RIS Cite

Enerji geri kazanımı için arıtma çamurunun hidrotermal karbonizasyonu

Year 2019, Volume: 10 Issue: 3, 1061 - 1072, 29.09.2019
https://doi.org/10.24012/dumf.452286

Abstract

Yenilenebilir enerji kaynakları arasında biyokütle, farklı dönüşüm yöntemleriyle enerji, değerli kimyasallar ve biyoyakıt üretimine imkan veren yegane kaynaktır. Üretilme miktarı, yapısındaki biyolojik olarak parçalanabilen organik fraksiyonun fazlalığı ve kuru bazda sahip olduğu enerji, arıtma çamurunu önemli bir biyokütle kaynağı yapmaktadır. Günümüzde arıtma çamurunun bertarafı bütünleşik bir yaklaşımla arıtma sistemlerinin içine dahil edilse de en fazla tercih edilen yöntemler vahşi depolama, yakma ve çimento sanayiinde ek yakıt olarak kullanmaktır. Hangi yöntem seçilirse seçilsin arıtma çamurunun içindeki nem oranı (>%85) nihai bertaraf yöntemini zorlaştırmakta ve susuzlandırmayı gerekli kılmaktadır. Yapısında oldukça fazla su bulunduran biyokütlelerin değerlendirilebilmesi için hidrotermal yöntemler iyi bir yaklaşım olabilir. Mevcut çalışma, bir belediyenin arıtma çamurunun hidrotermal karbonizasyonunu ve elde edilen hidrokokun yakıt özelliklerini incelemektedir. Ham arıtma çamuru herhangi bir ön işlem uygulanmadan doğrudan hidrotermal işleme alınmıştır. 220°C’de 45, 90 ve 120dk’lık reaksiyon sürelerinde gerçekleştirilen hidrotermal reaksiyonlarda katı madde dönüşümünün reaksiyon süresinden etkilenmediği ve arıtma çamuru içindeki katı maddenin yaklaşık %50’sinin hidrokoka dönüştüğü gözlemlenmiştir. Hidrokokların ısıl değerinin, uçucu madde ve sabit karbon içeriğinin karbonizasyon süresinden etkilendiği gözlemlenmiştir. Reaksiyon süresinin 45dk’dan 120dk’ya çıkarılması ısıl değeri yaklaşık %31, uçucu madde içeriğini de %14.5 azaltmıştır. Karbonizasyon süresinin 90dk olmasıyla sabit karbon içeriği %14 ve uçucu madde içeriği %31.2 ve 3043 cal/g ısıl değere sahip hidrokok elde edilmiştir. Hidrotermal karbonizasyonun arıtma çamurunu etkin bir şekilde susuzlandırdığı ve aromatizasyon reaksiyonu sonucu aromatik grupların oluştuğu FT-IR analizlerinden de görülmüştür.

References

  • Aznar, M., Manya, J., Garcia, G., Sanchez, J., & Murillo, B. (2008). Influence of Freeboard Temperature, Fluidization Velocity and Particle Size on Tar Production and Composition During the Air Gasification of Sewage Sludge. Energy & Fuels(22), 2840-2850.
  • Basu, P. (2010). Hydrothermal Gasification of Biomass. Biomass Gasification and Pyrolysis (s. Chapter 7). Academic Press.
  • Danso-Boateng, E., Holdich, R.G., Martin, S.J., Shama, G., Wheatley, A.D. (2015). Process energetics fort he hydrothermal carbonisation of human faecal wastes. Energy Conversion and Management(105), 1115-1124.
  • Dominguez, A., Menendez, J., & Pis, J. (2006). Hydrogen Rich Fuel Gas Production from the Pyrolysis of Wet Sewage Sludge at High Temperature. J. Anal. Appl. Pyrolysis(77 (2)), 127-132.
  • Ferreiro-Dominguez, N., Rigueiro-Rodriguez, A., & Mosguera-Losada, M. (2012). Sewage Sludge Fertiliser Use: Implications for Soil and Plant Copper Evolution in Forest and Agronomic Soils. Science of the Total Environment(424), 39-47.
  • Fonts, I., Azuara, M., Gea, G., Murillo, M.B. (2009). Study of the pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrolysis(85), 184-191.
  • Frost, H., & Ketchum Jr, L. (2000). Trace Metal Concentration in Durum Wheat from Application of Sewage Sludge and Commercial Fertilizer. Advances in Environmental Research(4), 347-355.
  • Gai, C., Guo, Y., Liu, T., Peng, N., & Liu, Z. (2016). Hydrogen-rich Gas Production by Steam Gasification of Hydrochar Derived from Sewage Sludge. International Journal of Hydrogen Energy(41), 3363-3372.
  • He, C., Giannis, A., & Wang, J. (2013). Conversion of Seage Sludge to Clean Solid Fuel Using Hydrothermal Carbonization: Hydrochar Fuel Characteristics and Combustion Behavior. Applied Energy(111), 257-266.
  • Huang, H., Yuan, X., Zhu, H., Li, H., Liu, Y., Wang, X., & Zeng, G. (2013). Comparative Studies of Thermochemical Liquefaction Characteristics of Microalgae, Lignocelluosc Biomass and Sewage Sludge. Energy(56), 52-60.
  • Jain, A., Balasubramanian, R., Srinivasan, M.P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal(283), 789-805. Kambo, H., & Dutta, A. (2015). Comparative Evaluation of Torrefaction and Hydrothermal Carbonization of Lignocellulosic fot the Production of Solid Biofuel. Energy Conversion and Management(105), 746-755.
  • Kliopova, I., Makarskiene, K. (2015). Improving material and energy recovery from sewage sludge and biomass residues. Waste Management(36), 269-276.
  • Koottatep, T., Fakkaew, K., TaiTai, N., & Pradeep, S. v. (2016). Sludge Stabilization and Energy Recovery by Hydrothermal Carbonization Process. Renewable Energy(99), 978-985.
  • Li, S., Li, Y., Lu, Q., Zhu, J., Yao, Y., & Bao, S. (2014). Integrated Drying and Incineration of Wet Sewage Sludge in Combined Bubbling and Circulating Fluidized Bed Units. Waste Management(34), 2531-2566.
  • Liu, F., Yu, R., Ji, X., Guo, M. (2018). Hydrothermal carbonization of holocellulose into hydrochar: structural, chemical characteristics, and combustion behavior. Bioresource Technology (26), 508-516.
  • Liu, Z., Balasubramanian, R. (2014). Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation. Applied Energy(114), 857-864.
  • Lombardi, L., Carnevale, E., & Corti, A. (2015). A Review of Technologies and Performances of Thermal Treatment Systems for Energy Recovery from Waste. Waste Management(37), 26-44.
  • Malins, K., Kampars, V., Brinks, J., Neibolte, I., Murnieks, R., & Kampare, R. (2015). Bio-oil from Thermo-Chemical Hydro-Liquefaction of Wet Sewage Sludge. Bioresource Technology(187), 23-29.
  • Marinovic, A., Pileidis, F.D., Titirici, M.M. (2015). Hydrothermal carbonization (HTC): History, State-of-the-art and Chemistry. Porous Carbon Materials from Sustainable Precursors. RSC Green Chemistry(32), 129-155.
  • Mills, N., Pearce, P., Farrow, J., Thorpe, R., & Kirkby, N. (2014). Environmental & Economic Life Cycle Assessment of Current & Future Sewage Sludge to Energy Technologies. Waste Management(34), 185-195.
  • Peng, C., Zhai, Y., Zhu, Y., Xu, B., Wang, T., Li, C., Zeng, G. (2016). Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel (176), 110-118.
  • Rathod, P., Patel, J., Shah, M., & Jhala, A. (2009). Recycling Gamma Irradiated Sewage Sludge as Fertilizer: A Case Study Using Onion (Alium Cepa)". Applied Soil Ecology(41:2), 223-233.
  • Romero-Anaya, A.J., Ouzzine, M., Lillo-Rodenas, M.A., Lineras-Solano, A. (2014). Spherical carbons: synthesis, characterization and activation processes. Carbon(68), 296-307.
  • Sevilla, M., & Fuertes, A. (2009). The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose. Carbon (47), 2281-2289.
  • Shao, J., Yan, R., & Chen, H. Y. (2010). Catalytic Effect of Metal Oxides on Pyrolysis of Seag Sludge. Fuel Processing Technology(91), 1113-1118.
  • Smith, A., Singh, S., & Ross, A. (2016). Fate of Inorganic Material During Hydrothermal Carbonization of Biomass: Influence of Feedstock on Combustion Behaviour of Hydrochar. Fuel(169), 135-145.
  • Stasta, P., Boran, P., Bebar, J., Stehlik, L., & Oral, P. (2006). Thermal Processing of Sewage Sludge. Appl. Therm. Eng.(26 (13)), 1420-1426.
  • Stucki, M., Eymann, L., Gerner, G., Hartmann, F., Wanner, R., Krebs, R. (2015). Hydrothermal carbonization of sewage sludge on industrial scale: energy efficiency, environmental effects and combustion. Journal of Energy Challenges and Mechanics(2), 38-44.
  • Suciu, N., Lamastra, L., & Trevisan, M. (2015). PAHs Content of Sewage Sludge in Europe and Its Use as Soil Fertilizer. Waste Management(41), 119-127.
  • Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G. (2018). A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, Fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews(90), 223-247.
  • Wang, L., Li, A., & Chang, Y. (2017). Relationship Between Enhanced Dewaterability and Structural Properties of Hydrothermal Sludge after Hydrothermal Treatment of Excess Sludge. Water Research(112), 72-82.
  • Zhao, P., Shen, Y., Ge, S., Yoshikawa, K., (2014). Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization, Energy Conversion and Management(78):815-821.
Year 2019, Volume: 10 Issue: 3, 1061 - 1072, 29.09.2019
https://doi.org/10.24012/dumf.452286

Abstract

References

  • Aznar, M., Manya, J., Garcia, G., Sanchez, J., & Murillo, B. (2008). Influence of Freeboard Temperature, Fluidization Velocity and Particle Size on Tar Production and Composition During the Air Gasification of Sewage Sludge. Energy & Fuels(22), 2840-2850.
  • Basu, P. (2010). Hydrothermal Gasification of Biomass. Biomass Gasification and Pyrolysis (s. Chapter 7). Academic Press.
  • Danso-Boateng, E., Holdich, R.G., Martin, S.J., Shama, G., Wheatley, A.D. (2015). Process energetics fort he hydrothermal carbonisation of human faecal wastes. Energy Conversion and Management(105), 1115-1124.
  • Dominguez, A., Menendez, J., & Pis, J. (2006). Hydrogen Rich Fuel Gas Production from the Pyrolysis of Wet Sewage Sludge at High Temperature. J. Anal. Appl. Pyrolysis(77 (2)), 127-132.
  • Ferreiro-Dominguez, N., Rigueiro-Rodriguez, A., & Mosguera-Losada, M. (2012). Sewage Sludge Fertiliser Use: Implications for Soil and Plant Copper Evolution in Forest and Agronomic Soils. Science of the Total Environment(424), 39-47.
  • Fonts, I., Azuara, M., Gea, G., Murillo, M.B. (2009). Study of the pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrolysis(85), 184-191.
  • Frost, H., & Ketchum Jr, L. (2000). Trace Metal Concentration in Durum Wheat from Application of Sewage Sludge and Commercial Fertilizer. Advances in Environmental Research(4), 347-355.
  • Gai, C., Guo, Y., Liu, T., Peng, N., & Liu, Z. (2016). Hydrogen-rich Gas Production by Steam Gasification of Hydrochar Derived from Sewage Sludge. International Journal of Hydrogen Energy(41), 3363-3372.
  • He, C., Giannis, A., & Wang, J. (2013). Conversion of Seage Sludge to Clean Solid Fuel Using Hydrothermal Carbonization: Hydrochar Fuel Characteristics and Combustion Behavior. Applied Energy(111), 257-266.
  • Huang, H., Yuan, X., Zhu, H., Li, H., Liu, Y., Wang, X., & Zeng, G. (2013). Comparative Studies of Thermochemical Liquefaction Characteristics of Microalgae, Lignocelluosc Biomass and Sewage Sludge. Energy(56), 52-60.
  • Jain, A., Balasubramanian, R., Srinivasan, M.P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal(283), 789-805. Kambo, H., & Dutta, A. (2015). Comparative Evaluation of Torrefaction and Hydrothermal Carbonization of Lignocellulosic fot the Production of Solid Biofuel. Energy Conversion and Management(105), 746-755.
  • Kliopova, I., Makarskiene, K. (2015). Improving material and energy recovery from sewage sludge and biomass residues. Waste Management(36), 269-276.
  • Koottatep, T., Fakkaew, K., TaiTai, N., & Pradeep, S. v. (2016). Sludge Stabilization and Energy Recovery by Hydrothermal Carbonization Process. Renewable Energy(99), 978-985.
  • Li, S., Li, Y., Lu, Q., Zhu, J., Yao, Y., & Bao, S. (2014). Integrated Drying and Incineration of Wet Sewage Sludge in Combined Bubbling and Circulating Fluidized Bed Units. Waste Management(34), 2531-2566.
  • Liu, F., Yu, R., Ji, X., Guo, M. (2018). Hydrothermal carbonization of holocellulose into hydrochar: structural, chemical characteristics, and combustion behavior. Bioresource Technology (26), 508-516.
  • Liu, Z., Balasubramanian, R. (2014). Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation. Applied Energy(114), 857-864.
  • Lombardi, L., Carnevale, E., & Corti, A. (2015). A Review of Technologies and Performances of Thermal Treatment Systems for Energy Recovery from Waste. Waste Management(37), 26-44.
  • Malins, K., Kampars, V., Brinks, J., Neibolte, I., Murnieks, R., & Kampare, R. (2015). Bio-oil from Thermo-Chemical Hydro-Liquefaction of Wet Sewage Sludge. Bioresource Technology(187), 23-29.
  • Marinovic, A., Pileidis, F.D., Titirici, M.M. (2015). Hydrothermal carbonization (HTC): History, State-of-the-art and Chemistry. Porous Carbon Materials from Sustainable Precursors. RSC Green Chemistry(32), 129-155.
  • Mills, N., Pearce, P., Farrow, J., Thorpe, R., & Kirkby, N. (2014). Environmental & Economic Life Cycle Assessment of Current & Future Sewage Sludge to Energy Technologies. Waste Management(34), 185-195.
  • Peng, C., Zhai, Y., Zhu, Y., Xu, B., Wang, T., Li, C., Zeng, G. (2016). Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel (176), 110-118.
  • Rathod, P., Patel, J., Shah, M., & Jhala, A. (2009). Recycling Gamma Irradiated Sewage Sludge as Fertilizer: A Case Study Using Onion (Alium Cepa)". Applied Soil Ecology(41:2), 223-233.
  • Romero-Anaya, A.J., Ouzzine, M., Lillo-Rodenas, M.A., Lineras-Solano, A. (2014). Spherical carbons: synthesis, characterization and activation processes. Carbon(68), 296-307.
  • Sevilla, M., & Fuertes, A. (2009). The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose. Carbon (47), 2281-2289.
  • Shao, J., Yan, R., & Chen, H. Y. (2010). Catalytic Effect of Metal Oxides on Pyrolysis of Seag Sludge. Fuel Processing Technology(91), 1113-1118.
  • Smith, A., Singh, S., & Ross, A. (2016). Fate of Inorganic Material During Hydrothermal Carbonization of Biomass: Influence of Feedstock on Combustion Behaviour of Hydrochar. Fuel(169), 135-145.
  • Stasta, P., Boran, P., Bebar, J., Stehlik, L., & Oral, P. (2006). Thermal Processing of Sewage Sludge. Appl. Therm. Eng.(26 (13)), 1420-1426.
  • Stucki, M., Eymann, L., Gerner, G., Hartmann, F., Wanner, R., Krebs, R. (2015). Hydrothermal carbonization of sewage sludge on industrial scale: energy efficiency, environmental effects and combustion. Journal of Energy Challenges and Mechanics(2), 38-44.
  • Suciu, N., Lamastra, L., & Trevisan, M. (2015). PAHs Content of Sewage Sludge in Europe and Its Use as Soil Fertilizer. Waste Management(41), 119-127.
  • Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G. (2018). A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, Fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews(90), 223-247.
  • Wang, L., Li, A., & Chang, Y. (2017). Relationship Between Enhanced Dewaterability and Structural Properties of Hydrothermal Sludge after Hydrothermal Treatment of Excess Sludge. Water Research(112), 72-82.
  • Zhao, P., Shen, Y., Ge, S., Yoshikawa, K., (2014). Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization, Energy Conversion and Management(78):815-821.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Sibel Başakçılardan Kabakcı

Doğancan Koca This is me 0000-0002-5976-668X

Publication Date September 29, 2019
Submission Date August 9, 2018
Published in Issue Year 2019 Volume: 10 Issue: 3

Cite

IEEE S. Başakçılardan Kabakcı and D. Koca, “Enerji geri kazanımı için arıtma çamurunun hidrotermal karbonizasyonu”, DUJE, vol. 10, no. 3, pp. 1061–1072, 2019, doi: 10.24012/dumf.452286.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456