Research Article
BibTex RIS Cite

Kompozit deniz yapısının dalga kuvvetleri altında incelenmesi

Year 2019, Volume: 10 Issue: 3, 1125 - 1136, 29.09.2019
https://doi.org/10.24012/dumf.544521

Abstract

Deniz
yapıları tabana sabitlenmiş ya da yüzer şekilde tasarlanabilmektedirler. Günümüzde,
yüzer yapıların kullanımı her derinlikte hizmet vermeleri nedeniyle hızla
artmaktadır. Bu yapıların yüzmesini tabanda bulunan pontonlar sağlar. Bu
çalışmada farklı malzemelerden üretilmiş iki farklı pontonun dalga kuvvetleri
etkisinde nümerik analizi yapılmıştır. Yapılardan ilki (Model 1) dışı beton içi
köpük olacak şekilde tasarlanmıştır. İkinci yapı ise sadece sert plastik
malzeme kullanılarak tasarlanmıştır. Analizlerde Abaqus sonlu elemanlar
programı kullanılmıştır. Yapının bulunduğu deniz ortamı ile arasındaki
etkileşim çift yönlü akışkan-yapı etkileşim analizleri ile
gerçekleştirilmiştir. Çift yönlü etkileşim analizinde Eulerian-Lagrangian
yaklaşımlarının birleşimi (CEL) ile modelleme yapılmıştır. Etkileşim
modellemesinde diğer modelleme tekniklerinden farklı olarak herhangi bir yüzey
tanımlanmamıştır. Etkileşim sadece genel temas özellikleri tanımlanarak
gerçekleştirilmiştir. Bu tip modellemede (CEL) sadece Abaqus/Explicit çözücüsü
kullanılmaktadır. Deniz ortamı Eulerian, yapı ise Lagrangian yaklaşımı ile
modellenmiştir. Deniz ortamının modellemesinde Lineer dalga hız profili kullanılmıştır.
Çözüme en uygun nokta ve eleman sayılarının belirlenmesi için hassaslık
analizleri yapılmıştır. Hassaslık analizleri modal davranış üzerinden
gerçekleştirilmiştir. Nümerik modelin tahkiki dalga su yüzü profilleri
üzerinden yapılmıştır. Zamanla değişen su yüzü profilleri iki farklı noktada
analitik ve nümerik olarak elde edilmiştir. Analitik ve nümerik dalga
profillerininin uyumu sayısal ve görsel olarak tespit edilmiştir. Yapısal
analizde ise modal davranışlar, frekanslar ve gerilme dağılımları elde
edilmiştir. Çalışmanın sonunda farklı bir akışkan-yapı etkileşim tekniği
kullanılması durumunda kullanılacak nokta ve eleman sayıları elde edilmiştir. Bu
değerlerin çözüme etkisi süre ve bellek gereksinimi açısından tartışılmıştır.

References

  • Aboshio, A., Ye, J., (2016). Numerical study of the dynamic response of inflatable offshore fender barrier structures using the Coupled Eulerian–Lagrangian discretization technique, Ocean Engineering, 112, 265–276.
  • Aquelet, N., Souli, M., Olovsson, L., (2006). Euler–Lagrange coupling with damping effects: application to slamming problems, Comput. Methods Appl. Mech. Eng, 195, 110–132.
  • Benson, D.J., Okazawa, S., (2004). Contact in a multi-material Eulerian finite element formulation, Comput. Methods Appl. Mech. Engrg, 193, 4277-4298.
  • Chen, X., Miao, Y., Tang, X., Liu, J., (2017). Numerical and experimental analysis of a moored pontoon under regular wave in water of finite depth, Ships and Offshore Structures. 12:3, 412-423.
  • Christensen, E.D., Bingham, H.B. Friis, A.P.S., Larsen, A.K., Jensen, K.L., (2018). An experimental and numerical study of floating breakwaters, Coastal Engineering, 137, 43–58.
  • Dassault Systemes, Abaqus, Version 6.10 documentation, 2010.
  • Ducobu, F., Riviere-Lorphevre. E., Filippi, E., (2016). Application of the Coupled Eulerian-Lagrangian (CEL) method to the modeling of orthogonal cutting, European Journal of Mechanics A/Solids, 59, 58-66.
  • Gao, R.P., Wang, C.M. Koh, C.G., (2013). Reducing hydroelastic response of pontoon-type very large floating structures using flexible connector and gill cells, Engineering Structures, 52, 372–383.
  • Gücüyen, E., Erdem, R.T., (2016). Açık deniz uzay kafes sistemin çevresel yükler altında akışkan-yapı etkileşimli analizi, Dicle Üniversitesi Mühendislik Fakültesi mühendislik dergisi, 7:3, 433-444.
  • Loukogeorgaki, E., Lentsiou, E.N., Aksel, M., Yagci, O., (2017). Experimental investigation of the hydroelastic and the structural response of a moored pontoon-type modular floating breakwater with flexible connectors, Coastal Engineering 121, 240–254.
  • Zhang, H., Xu, D., Zhao, H., Xia, S., Wu, Y., (2018). Energy extraction of wave energy converters embedded in a very large modularized floating platform, Energy 158, 317-329.
  • Haicheng, Z., Daolin, X., Huai, Z., Shuyan, X., Yousheng, W., (2018). Energy extraction of wave energy converters embedded in a very large modularized floating platform, Energy, 158, 317-329.
  • Han Y., Le C., Ding H., Cheng Z., Zhang P., (2017). Stability and dynamic response analysis of a submerged tension leg platform for offshore wind turbines, Ocean Engineering, 129, 68-82.
  • Huang, S., Sheng, S., Gerthoffert, A., Cong, Y., Zhang, T., Wang, Z., (2019). Numerical design study of multipoint mooring systems for the floating wave energy converter in deep water with a sloping bottom, Renewable Energy, 136, 558-571.
  • Ji, C., Cheng, Y., Yang, K., Oleg, G., (2017). Numerical and experimental investigation of hydrodynamic performance of a cylindrical dual pontoon-net floating breakwater, Coastal Engineering, 129, 1-16.
  • Ji, C., Cheng, Y., Cui, J., Yuan, Z., Gaidai O., (2018). Hydrodynamic performance of floating breakwaters in long wave regime: An experimental study, Ocean Engineering 152, 154–166.
  • Korobenko, A., Yan, J., Gohari, S.M.I., Sarkar, S., Bazilevs, Y.. (2017). FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Computers and Fluids, 158, 167-175.
  • Liang, Y., Tao, L., (2017). Interaction of vortex shedding processes on flow over a deep-draft semi-submersible, Ocean Engineering, 141, 427-449.Liu, J., (2016). A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures, Journal of Computational Physics, 304, 380–423.
  • Liu, H., Xu, K., Zhao, Y., (2016). Numerical investigation on the penetration of gravity installed anchors by a coupled Eulerian–Lagrangian approach. Applied Ocean Research 60:94–108.
  • Loukogeorgaki, E., Yagci, O., Kabdasli, M.S., (2014). 3D Experimental investigation of the structural response and the effectiveness of a moored floating breakwater with flexibly connected modules, Coastal Engineering, 91, 164–180.
  • Maa, R., Bia, K., Hao, H., (2018). Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI). Engineering Structures 177, 357–373.
  • Martínez, E.L., Quiroga, A.G., Jardini, A.L., Filho, R.M., (2009). Computational fluid dynamics simulation of the water–sugar cane bagasse suspension in pipe with internal static mixer, Computer Aided Chemical Engineering. 26, 683-688.
  • Ning DZ, Zhao XL, Zhao M, Hann M, Kang HG. Analytical investigation of hydrodynamic performance of a dual pontoon WEC-type breakwater, Applied Ocean Research, 65:102-111. 2017.
  • Reddy, J.N., (2010). Principles of Continuum Mechanics. Cambridge University Press, New York, USA.
  • Ren, B., He, M., Li, Y., Dong, P., (2017). Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction, Applied Ocean Research, 67, 277-290.
  • Sha, Y., Amdahl, J., Aalberg, A.. Yu, Z., (2018). Numerical investigations of the dynamic response of a floating bridge under environmental loadings, Ships and Offshore Structures, 13:1, 113–126.
  • Tang, H., Huang, C.C., Chen, W.M., (2011). Dynamics of dual pontoon floating structure for cage aquaculture in a two-dimensional numerical wave tank, Journal of Fluids and Structures, 27, 918–936.
  • Yanga, Z., Xie, M., Gao, Z., Xu, T., Guo, W., Ji, X., Yuan, C., (2018). Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater, Ocean Engineering, 167, 77-94.
  • Zhan, J.M., Chen, X.B., Gong, Y.J., Hu, W.Q., (2017). Numerical investigation of the interaction between an inverse T-type fixed/ floating breakwater and regular/irregular waves, Ocean Engineering. 137, 110–119.
  • Zhao, Y.P., Bai X.D., Dong, G.H., Bi, C.W., (2016). Deformation and stress distribution of floating collar of net cage in steady current, Ships and Offshore Structures. doi: 10.1080/17445302.2016.1210321.
Year 2019, Volume: 10 Issue: 3, 1125 - 1136, 29.09.2019
https://doi.org/10.24012/dumf.544521

Abstract

References

  • Aboshio, A., Ye, J., (2016). Numerical study of the dynamic response of inflatable offshore fender barrier structures using the Coupled Eulerian–Lagrangian discretization technique, Ocean Engineering, 112, 265–276.
  • Aquelet, N., Souli, M., Olovsson, L., (2006). Euler–Lagrange coupling with damping effects: application to slamming problems, Comput. Methods Appl. Mech. Eng, 195, 110–132.
  • Benson, D.J., Okazawa, S., (2004). Contact in a multi-material Eulerian finite element formulation, Comput. Methods Appl. Mech. Engrg, 193, 4277-4298.
  • Chen, X., Miao, Y., Tang, X., Liu, J., (2017). Numerical and experimental analysis of a moored pontoon under regular wave in water of finite depth, Ships and Offshore Structures. 12:3, 412-423.
  • Christensen, E.D., Bingham, H.B. Friis, A.P.S., Larsen, A.K., Jensen, K.L., (2018). An experimental and numerical study of floating breakwaters, Coastal Engineering, 137, 43–58.
  • Dassault Systemes, Abaqus, Version 6.10 documentation, 2010.
  • Ducobu, F., Riviere-Lorphevre. E., Filippi, E., (2016). Application of the Coupled Eulerian-Lagrangian (CEL) method to the modeling of orthogonal cutting, European Journal of Mechanics A/Solids, 59, 58-66.
  • Gao, R.P., Wang, C.M. Koh, C.G., (2013). Reducing hydroelastic response of pontoon-type very large floating structures using flexible connector and gill cells, Engineering Structures, 52, 372–383.
  • Gücüyen, E., Erdem, R.T., (2016). Açık deniz uzay kafes sistemin çevresel yükler altında akışkan-yapı etkileşimli analizi, Dicle Üniversitesi Mühendislik Fakültesi mühendislik dergisi, 7:3, 433-444.
  • Loukogeorgaki, E., Lentsiou, E.N., Aksel, M., Yagci, O., (2017). Experimental investigation of the hydroelastic and the structural response of a moored pontoon-type modular floating breakwater with flexible connectors, Coastal Engineering 121, 240–254.
  • Zhang, H., Xu, D., Zhao, H., Xia, S., Wu, Y., (2018). Energy extraction of wave energy converters embedded in a very large modularized floating platform, Energy 158, 317-329.
  • Haicheng, Z., Daolin, X., Huai, Z., Shuyan, X., Yousheng, W., (2018). Energy extraction of wave energy converters embedded in a very large modularized floating platform, Energy, 158, 317-329.
  • Han Y., Le C., Ding H., Cheng Z., Zhang P., (2017). Stability and dynamic response analysis of a submerged tension leg platform for offshore wind turbines, Ocean Engineering, 129, 68-82.
  • Huang, S., Sheng, S., Gerthoffert, A., Cong, Y., Zhang, T., Wang, Z., (2019). Numerical design study of multipoint mooring systems for the floating wave energy converter in deep water with a sloping bottom, Renewable Energy, 136, 558-571.
  • Ji, C., Cheng, Y., Yang, K., Oleg, G., (2017). Numerical and experimental investigation of hydrodynamic performance of a cylindrical dual pontoon-net floating breakwater, Coastal Engineering, 129, 1-16.
  • Ji, C., Cheng, Y., Cui, J., Yuan, Z., Gaidai O., (2018). Hydrodynamic performance of floating breakwaters in long wave regime: An experimental study, Ocean Engineering 152, 154–166.
  • Korobenko, A., Yan, J., Gohari, S.M.I., Sarkar, S., Bazilevs, Y.. (2017). FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Computers and Fluids, 158, 167-175.
  • Liang, Y., Tao, L., (2017). Interaction of vortex shedding processes on flow over a deep-draft semi-submersible, Ocean Engineering, 141, 427-449.Liu, J., (2016). A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures, Journal of Computational Physics, 304, 380–423.
  • Liu, H., Xu, K., Zhao, Y., (2016). Numerical investigation on the penetration of gravity installed anchors by a coupled Eulerian–Lagrangian approach. Applied Ocean Research 60:94–108.
  • Loukogeorgaki, E., Yagci, O., Kabdasli, M.S., (2014). 3D Experimental investigation of the structural response and the effectiveness of a moored floating breakwater with flexibly connected modules, Coastal Engineering, 91, 164–180.
  • Maa, R., Bia, K., Hao, H., (2018). Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI). Engineering Structures 177, 357–373.
  • Martínez, E.L., Quiroga, A.G., Jardini, A.L., Filho, R.M., (2009). Computational fluid dynamics simulation of the water–sugar cane bagasse suspension in pipe with internal static mixer, Computer Aided Chemical Engineering. 26, 683-688.
  • Ning DZ, Zhao XL, Zhao M, Hann M, Kang HG. Analytical investigation of hydrodynamic performance of a dual pontoon WEC-type breakwater, Applied Ocean Research, 65:102-111. 2017.
  • Reddy, J.N., (2010). Principles of Continuum Mechanics. Cambridge University Press, New York, USA.
  • Ren, B., He, M., Li, Y., Dong, P., (2017). Application of smoothed particle hydrodynamics for modeling the wave-moored floating breakwater interaction, Applied Ocean Research, 67, 277-290.
  • Sha, Y., Amdahl, J., Aalberg, A.. Yu, Z., (2018). Numerical investigations of the dynamic response of a floating bridge under environmental loadings, Ships and Offshore Structures, 13:1, 113–126.
  • Tang, H., Huang, C.C., Chen, W.M., (2011). Dynamics of dual pontoon floating structure for cage aquaculture in a two-dimensional numerical wave tank, Journal of Fluids and Structures, 27, 918–936.
  • Yanga, Z., Xie, M., Gao, Z., Xu, T., Guo, W., Ji, X., Yuan, C., (2018). Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater, Ocean Engineering, 167, 77-94.
  • Zhan, J.M., Chen, X.B., Gong, Y.J., Hu, W.Q., (2017). Numerical investigation of the interaction between an inverse T-type fixed/ floating breakwater and regular/irregular waves, Ocean Engineering. 137, 110–119.
  • Zhao, Y.P., Bai X.D., Dong, G.H., Bi, C.W., (2016). Deformation and stress distribution of floating collar of net cage in steady current, Ships and Offshore Structures. doi: 10.1080/17445302.2016.1210321.
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Engin Gücüyen This is me

Recep Tuğrul Erdem

Publication Date September 29, 2019
Submission Date March 25, 2019
Published in Issue Year 2019 Volume: 10 Issue: 3

Cite

IEEE E. Gücüyen and R. T. Erdem, “Kompozit deniz yapısının dalga kuvvetleri altında incelenmesi”, DUJE, vol. 10, no. 3, pp. 1125–1136, 2019, doi: 10.24012/dumf.544521.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456