Research Article
BibTex RIS Cite

Plastisite Modellerinde Pekleşme Etkisinin Sonlu Elemanlar Analizi İle Tespiti

Year 2020, Volume: 11 Issue: 1, 171 - 181, 27.03.2020
https://doi.org/10.24012/dumf.479746

Abstract

Malzemelerin deformasyonu sırasında akma davranışının gelişim göstermesi pekleşme davranışı olarak adlandırılır. Malzemelerin plastik davranışını temsil eden plastisite modelleri sonlu elemanlar analizlerine malzeme modelleri olarak entegre edilmişlerdir. Her malzeme modeli kendi bünyesinde farklı kabuller barındırır. Pekleşme açısından plastisite modelleri değerlendirildiğinde temelde izotropik pekleşme ve kinematik pekleşme kabullerini yapan iki temel grup ortaya çıkmaktadır. Bu çalışmada sac metal şekillendirme işlemlerinden bir panel çekme prosesi temel alınarak plastisite modellerinde pekleşme etkisinin sonlu elemanlar analizleri ile değerlendirilmesi gerçekleştirilmiştir. Bu amaçla 4 farklı malzeme, izotropik ve kinematik pekleşme kabullerine sahip farklı plastisite modelleri ile modellenmiş ve pekleşme etkisinin gerilme, plastik gerinim ve şekillendirilebilirlik üzerine etkileri incelenmiştir. 

References

  • Ahmed, M., (2016). Adaptive finite element simulation of sheet forming process parameters. Journal of King Saud University-Engineering Sciences.
  • Awais, M., Sorvari, J., Tanninen, P., & Leppänen, T., (2017). Finite element analysis of the press forming process. International Journal of Mechanical Sciences, 131, 767-775.
  • Boutenel, F., Delhomme, M., Velay, V., & omain Boman, R., (2018). Finite element modelling of cold drawing for high-precision tubes. Comptes Rendus Mécanique, In press.
  • Chongthairungruang, B., Uthaisangsuk, V., Suranuntchai, S., Jirathearanat, S., (2013). Springback prediction in sheet metal forming of high strength steels, Materials and Design, 50:253–266.
  • Coombs, W. M., & Motlagh, Y. G., (2017). NURBS plasticity: Yield surface evolution and implicit stress integration for isotropic hardening. Computer Methods in Applied Mechanics and Engineering, 324, 204-220.
  • Çapan, L., (2010), Metallere Plastik Şekil Verme, Çağlayan Kitapevi, 5. Baskı, İstanbul.
  • Dieter, G. E., (1961). Mechanical Metallurgy, McGraw-Hill Book Company.
  • Ghaei A., (2010). Modeling Springback in Stamped Automotive Structures, Electronic Theses and Dissertations, Doktora Tezi, Mechanical, Automotive & Materials Engineering, The University of Windsor.
  • Hakansson, P., Wallin, M., & Ristinmaa, M., (2005). Comparison of isotropic hardening and kinematic hardening in thermoplasticity. International Journal of Plasticity, 21(7), 1435-1460.
  • Hill, R., (1948). A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London, pp.281-297.
  • Hou, Y., Min, J., Lin, J., Liu, Z., Carsley, J. E., & Stoughton, T. B., (2017). Springback prediction of sheet metals using improved material models. Procedia Engineering, 207, 173-178.
  • Ingarao, G., Di Lorenzo, R., & Micari, F., (2009). Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure. Materials & Design, 30(10), 4421-4433.
  • Lemaitre, J., Chaboche, JL., (1990). Mechanics of solid materials, Cambridge University Press, Cambridge.
  • Ls-Dyna Theoretical Manual, (1998). Livermore Software Technology Corporation.
  • Mises, R., (1913). Mechanics of solids in plastic state (Almanca), Göttinger Nachrichten Math. Phys. Klasse, p.582.
  • Ozsoy, M., Esener, E., Ercan, S., & Firat, M., (2014). Springback predictions of a dual-phase steel considering elasticity evolution in stamping process. Arabian Journal for Science and Engineering, 39(4), 3199-3207.
  • Paul, J. D., Hoppe, R., & Appel, F., (2016). On the Bauschinger effect in TiAl alloys. Acta Materialia, 104, 101-108.
  • Peng, X., Shi, S., Hu, K., (2013). Comparison of material models for springback prediction in an automotive panel using finite element method, Journal of Materials Engineering and Performance, 22(10):2290-2296.
  • Qin, J., Holmedal, B., & Hopperstad, O. S., (2018). A combined isotropic, kinematic and distortional hardening model for aluminum and steels under complex strain-path changes. International Journal of Plasticity, 101, 156-169.
  • Tresca, H., (1864). On the yield of solids at high pressures (Fransızca), Comptes Rendus Academie des Sciences, Paris 59, pp.754.
  • Xie, Q., Van Bael, A., An, Y. G., Lian, J., & Sidor, J. J., (2018). Effects of the isotropic and anisotropic hardening within each grain on the evolution of the flow stress, the r-value and the deformation texture of tensile tests for AA6016 sheets. Materials Science and Engineering: A, 721, 154-164.
  • Yoshida, F., Uemori, (2002). T., A model of large-strain cyclic plasticity describing the Baushinger effect and workhardening stagnation, Int. J. Plasticity, 18:661-689.
Year 2020, Volume: 11 Issue: 1, 171 - 181, 27.03.2020
https://doi.org/10.24012/dumf.479746

Abstract

References

  • Ahmed, M., (2016). Adaptive finite element simulation of sheet forming process parameters. Journal of King Saud University-Engineering Sciences.
  • Awais, M., Sorvari, J., Tanninen, P., & Leppänen, T., (2017). Finite element analysis of the press forming process. International Journal of Mechanical Sciences, 131, 767-775.
  • Boutenel, F., Delhomme, M., Velay, V., & omain Boman, R., (2018). Finite element modelling of cold drawing for high-precision tubes. Comptes Rendus Mécanique, In press.
  • Chongthairungruang, B., Uthaisangsuk, V., Suranuntchai, S., Jirathearanat, S., (2013). Springback prediction in sheet metal forming of high strength steels, Materials and Design, 50:253–266.
  • Coombs, W. M., & Motlagh, Y. G., (2017). NURBS plasticity: Yield surface evolution and implicit stress integration for isotropic hardening. Computer Methods in Applied Mechanics and Engineering, 324, 204-220.
  • Çapan, L., (2010), Metallere Plastik Şekil Verme, Çağlayan Kitapevi, 5. Baskı, İstanbul.
  • Dieter, G. E., (1961). Mechanical Metallurgy, McGraw-Hill Book Company.
  • Ghaei A., (2010). Modeling Springback in Stamped Automotive Structures, Electronic Theses and Dissertations, Doktora Tezi, Mechanical, Automotive & Materials Engineering, The University of Windsor.
  • Hakansson, P., Wallin, M., & Ristinmaa, M., (2005). Comparison of isotropic hardening and kinematic hardening in thermoplasticity. International Journal of Plasticity, 21(7), 1435-1460.
  • Hill, R., (1948). A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London, pp.281-297.
  • Hou, Y., Min, J., Lin, J., Liu, Z., Carsley, J. E., & Stoughton, T. B., (2017). Springback prediction of sheet metals using improved material models. Procedia Engineering, 207, 173-178.
  • Ingarao, G., Di Lorenzo, R., & Micari, F., (2009). Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure. Materials & Design, 30(10), 4421-4433.
  • Lemaitre, J., Chaboche, JL., (1990). Mechanics of solid materials, Cambridge University Press, Cambridge.
  • Ls-Dyna Theoretical Manual, (1998). Livermore Software Technology Corporation.
  • Mises, R., (1913). Mechanics of solids in plastic state (Almanca), Göttinger Nachrichten Math. Phys. Klasse, p.582.
  • Ozsoy, M., Esener, E., Ercan, S., & Firat, M., (2014). Springback predictions of a dual-phase steel considering elasticity evolution in stamping process. Arabian Journal for Science and Engineering, 39(4), 3199-3207.
  • Paul, J. D., Hoppe, R., & Appel, F., (2016). On the Bauschinger effect in TiAl alloys. Acta Materialia, 104, 101-108.
  • Peng, X., Shi, S., Hu, K., (2013). Comparison of material models for springback prediction in an automotive panel using finite element method, Journal of Materials Engineering and Performance, 22(10):2290-2296.
  • Qin, J., Holmedal, B., & Hopperstad, O. S., (2018). A combined isotropic, kinematic and distortional hardening model for aluminum and steels under complex strain-path changes. International Journal of Plasticity, 101, 156-169.
  • Tresca, H., (1864). On the yield of solids at high pressures (Fransızca), Comptes Rendus Academie des Sciences, Paris 59, pp.754.
  • Xie, Q., Van Bael, A., An, Y. G., Lian, J., & Sidor, J. J., (2018). Effects of the isotropic and anisotropic hardening within each grain on the evolution of the flow stress, the r-value and the deformation texture of tensile tests for AA6016 sheets. Materials Science and Engineering: A, 721, 154-164.
  • Yoshida, F., Uemori, (2002). T., A model of large-strain cyclic plasticity describing the Baushinger effect and workhardening stagnation, Int. J. Plasticity, 18:661-689.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Emre Esener 0000-0001-5854-4834

Publication Date March 27, 2020
Submission Date November 7, 2018
Published in Issue Year 2020 Volume: 11 Issue: 1

Cite

IEEE E. Esener, “Plastisite Modellerinde Pekleşme Etkisinin Sonlu Elemanlar Analizi İle Tespiti”, DUJE, vol. 11, no. 1, pp. 171–181, 2020, doi: 10.24012/dumf.479746.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456