Research Article
BibTex RIS Cite

Yeşil Binalar için Analitik Ağ Süreci (AAS) Kullanılarak Yüklenici Seçimi

Year 2020, Volume: 11 Issue: 3, 1277 - 1284, 30.09.2020
https://doi.org/10.24012/dumf.661711

Abstract

Binalar, dünyadaki tükenebilen kaynakların azalmasında ve enerji tüketiminde önemli bir paya sahiptir. Bu çevresel etkileri en aza indirmek için yeşil binalar dünyada giderek önem kazanmaya başlamıştır. Yeşil binaların giderek önem kazandığı ve sayısının her geçen gün arttığı ülkelerden birisi de Türkiye’dir. Yeşil bina yaptırmak isteyen yatırımcıların en önemli sorunlarından biri, yeşil bina inşaatını yapacak olan yüklenici firmanın seçimidir. Bu çalışmada çok kriterli seçim yöntemlerinden biri olan Analitik Ağ Süreci (AAS) kullanılarak yeşil binalar için yüklenici seçim modeli oluşturulması hedeflenmiştir. Buna göre, önce kavramsal bir model geliştirilmiş daha sonra AAS kullanılarak önerilen modelin pratikte nasıl uygulanabileceği Ankara’da gerçekleştirilmesi planlanan bir yeşil bina projesinde gösterilmiştir. Oluşturulan bu modelin yeşil binalar için yüklenici seçimi yapan yatırımcılara yardımcı olacağı düşünülmektedir.

References

  • Bu-Qammaz, A. S., I. Dikmen, & M. T. Birgonul. (2009). Risk assessment of international construction projects using the analytic network process, Can. J. Civ. Eng., 36(7), 1170-1181.
  • Cao, X., D. Xilei, & J. Liu. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade, Energy and Buildings, 128:198-213.
  • Cheng, E., & H. Li. (2004). Contractor selection using the analytic network process, Constr. Manage. Econ., 22(10):1021–1032.
  • Dikmen, I., M. T. Birgonul, & B. Ozorhon. (2007). Project appraisal and selection using the analytic network process, Can. J. Civ. Eng., 34(7):786–792.
  • Do, S. T., V. Likhitruangsilp, T. T. Kiet, & P. T. Nguyen. (2017). Risk assessment for international construction joint ventures in Vietnam, International Journal of Advanced and Applied Sciences, 4(6):104-114.
  • El-Abbasy, M. S., T. Zayed, M. Ahmed, H. Alzraiee, & M. Abouhamad. (2013). Contractor selection model for highway projects using integrated simulation and analytic network process, J. Constr. Eng. Manage., 139 (7): 755–767.
  • Erdem, D., & B. Ozorhon. (2015). Assessing Real Estate Project Success Using an Analytic Network Process, Journal of Management in Engineering, 31(4):04014065.
  • Hasnain, M., M. J. Thaheem, & F. Ullah. (2018). Best Value Contractor Selection in Road Construction Projects:ANP-Based Decision Support System, Int. J. Civ. Eng., 16:695–714.
  • Kiani Mavi, R., & C. Standing. (2018). Critical success factors of sustainable project management in construction: A fuzzy DEMATEL-ANP approach, Journal of Cleaner Production, 194:751-765.
  • Li, X.K., X. M. Wang, & L. Lei. (2019). The application of an ANP-Fuzzy comprehensive evaluation model to assess lean construction management performance, Engineering, Construction and Architectural Management.
  • Ozcan-Deniz, G., & Zhu, Y. (2015). A Multi-Objective Decision-Support Model for Selecting Environmentally Conscious Highway Construction Methods, Journal of Civil Engineering and Management, 21(6):733-747.
  • Ozorhon, B., I. Dikmen, & M. T. Birgonul. (2007). Using analytic network process to predict the performance of international construction joint ventures, Journal of Management in Engineering, 23(3):156-163.
  • Perez-Lombard, L., J. Ortiz, & C. Pout. (2008). A review on buildings energy consumption information, Energy and Buildings, 40:394-398
  • Reisi, M., A. Afzali, & L. Aye. (2018). Applications of analytical hierarchy process (AHP) and analytical network process (ANP) for industrial site selections in Isfahan, Iran, Environmental Earth Sciences, 77(14).
  • Saaty, T. L. (1980). The analytic hierarchy process, McGraw-Hill, New York.
  • Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process, RWS Publications, Pittsburgh.
  • Saaty, T. L. (2004). Fundamentals of the analytical network process-dependence and feedback in decision-making with a single network, Journal of Systems Science and Systems Engineering, 13(2): 129–157.
  • Saaty, T.L. (2005). Theory and applications of the Analytic Network Process: decision making with benefits, opportunities, costs, and risks, RWS Publications, Pittsburgh, Penn., USA.
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process, International Journal of Services Sciences, 1(1):83–98.
  • Shahpari, M., F. M. Saradj, M. S. Pishvaee, & S. Piri. (2020). Assessing the productivity of prefabricated and in-situ construction systems using hybrid multi-criteria decision making method, Journal of Building Engineering, 27(100979).
  • Toki Haber. (2019). Türkiye yeşil bina sayısında Avrupa lideri – TOKİ Haber. [internet] Site adresi: https://www.tokihaber.com.tr/haberler/turkiye-yesil-bina-sayisinda-avrupa-lideri/ [Son erişim tarihi 18 Aralık 2019].
  • Yang, T., P. Song, J. Liu, & M. Wang. (2019). The assessment of metro station construction safety risk based on ANP-grey clustering method, Conference Proceedings of the 7th International Symposium on Project Management, ISPM 2019, pp. 153-158.
  • Yas, Z., & K. Jaafer. (2020). Factors influencing the spread of green building projects in the UAE, Journal of Building Engineering, 27(100894).
Year 2020, Volume: 11 Issue: 3, 1277 - 1284, 30.09.2020
https://doi.org/10.24012/dumf.661711

Abstract

References

  • Bu-Qammaz, A. S., I. Dikmen, & M. T. Birgonul. (2009). Risk assessment of international construction projects using the analytic network process, Can. J. Civ. Eng., 36(7), 1170-1181.
  • Cao, X., D. Xilei, & J. Liu. (2016). Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade, Energy and Buildings, 128:198-213.
  • Cheng, E., & H. Li. (2004). Contractor selection using the analytic network process, Constr. Manage. Econ., 22(10):1021–1032.
  • Dikmen, I., M. T. Birgonul, & B. Ozorhon. (2007). Project appraisal and selection using the analytic network process, Can. J. Civ. Eng., 34(7):786–792.
  • Do, S. T., V. Likhitruangsilp, T. T. Kiet, & P. T. Nguyen. (2017). Risk assessment for international construction joint ventures in Vietnam, International Journal of Advanced and Applied Sciences, 4(6):104-114.
  • El-Abbasy, M. S., T. Zayed, M. Ahmed, H. Alzraiee, & M. Abouhamad. (2013). Contractor selection model for highway projects using integrated simulation and analytic network process, J. Constr. Eng. Manage., 139 (7): 755–767.
  • Erdem, D., & B. Ozorhon. (2015). Assessing Real Estate Project Success Using an Analytic Network Process, Journal of Management in Engineering, 31(4):04014065.
  • Hasnain, M., M. J. Thaheem, & F. Ullah. (2018). Best Value Contractor Selection in Road Construction Projects:ANP-Based Decision Support System, Int. J. Civ. Eng., 16:695–714.
  • Kiani Mavi, R., & C. Standing. (2018). Critical success factors of sustainable project management in construction: A fuzzy DEMATEL-ANP approach, Journal of Cleaner Production, 194:751-765.
  • Li, X.K., X. M. Wang, & L. Lei. (2019). The application of an ANP-Fuzzy comprehensive evaluation model to assess lean construction management performance, Engineering, Construction and Architectural Management.
  • Ozcan-Deniz, G., & Zhu, Y. (2015). A Multi-Objective Decision-Support Model for Selecting Environmentally Conscious Highway Construction Methods, Journal of Civil Engineering and Management, 21(6):733-747.
  • Ozorhon, B., I. Dikmen, & M. T. Birgonul. (2007). Using analytic network process to predict the performance of international construction joint ventures, Journal of Management in Engineering, 23(3):156-163.
  • Perez-Lombard, L., J. Ortiz, & C. Pout. (2008). A review on buildings energy consumption information, Energy and Buildings, 40:394-398
  • Reisi, M., A. Afzali, & L. Aye. (2018). Applications of analytical hierarchy process (AHP) and analytical network process (ANP) for industrial site selections in Isfahan, Iran, Environmental Earth Sciences, 77(14).
  • Saaty, T. L. (1980). The analytic hierarchy process, McGraw-Hill, New York.
  • Saaty, T. L. (1996). Decision making with dependence and feedback: The analytic network process, RWS Publications, Pittsburgh.
  • Saaty, T. L. (2004). Fundamentals of the analytical network process-dependence and feedback in decision-making with a single network, Journal of Systems Science and Systems Engineering, 13(2): 129–157.
  • Saaty, T.L. (2005). Theory and applications of the Analytic Network Process: decision making with benefits, opportunities, costs, and risks, RWS Publications, Pittsburgh, Penn., USA.
  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process, International Journal of Services Sciences, 1(1):83–98.
  • Shahpari, M., F. M. Saradj, M. S. Pishvaee, & S. Piri. (2020). Assessing the productivity of prefabricated and in-situ construction systems using hybrid multi-criteria decision making method, Journal of Building Engineering, 27(100979).
  • Toki Haber. (2019). Türkiye yeşil bina sayısında Avrupa lideri – TOKİ Haber. [internet] Site adresi: https://www.tokihaber.com.tr/haberler/turkiye-yesil-bina-sayisinda-avrupa-lideri/ [Son erişim tarihi 18 Aralık 2019].
  • Yang, T., P. Song, J. Liu, & M. Wang. (2019). The assessment of metro station construction safety risk based on ANP-grey clustering method, Conference Proceedings of the 7th International Symposium on Project Management, ISPM 2019, pp. 153-158.
  • Yas, Z., & K. Jaafer. (2020). Factors influencing the spread of green building projects in the UAE, Journal of Building Engineering, 27(100894).
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Emre Caner Akçay

Publication Date September 30, 2020
Submission Date December 19, 2019
Published in Issue Year 2020 Volume: 11 Issue: 3

Cite

IEEE E. C. Akçay, “Yeşil Binalar için Analitik Ağ Süreci (AAS) Kullanılarak Yüklenici Seçimi”, DUJE, vol. 11, no. 3, pp. 1277–1284, 2020, doi: 10.24012/dumf.661711.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456