Research Article
BibTex RIS Cite

Rogosinski Lemması ile ilgili Süren Nokta Empedans Fonksiyonları için Carathéodory Eşitsizliği

Year 2021, Volume: 12 Issue: 1, 61 - 68, 13.01.2021
https://doi.org/10.24012/dumf.860229

Abstract

Bu makalede, Carathéodory eşitsizliğinin bir sınır versiyonu, pozitif reel fonksiyonlar açısından incelenmiştir. Buna göre, Z(s) süren nokta empedans fonksiyonu; s düzleminin sağ yarı düzleminde tanımlanmış, 𝑍(𝑠)=𝐴2+𝑐1(𝑠−1)+𝑐2(𝑠−1)2+⋯ olarak verilen analitik bir fonksiyondur. Z(s) fonksiyonunun sanal eksen üzerinde s = 0 sınır noktasında da analitik olduğu varsayılarak, Rogosinski lemması yardımıyla, Z(s) 'nin türevinin modülü için yeni eşitsizlikler elde edilmiştir. Ayrıca, sunulan eşitsizliklerin kesinliği kanıtlanmış ve elde edilen ekstremal fonksiyonların spektral özellikleri araştırılmıştır. Bu doğrultuda, çalışmada önerilen analizler kullanılarak çeşitli filtre yapılarının elde edilmesinin mümkün olduğu gözlenmiştir.

References

  • [1] Örnek, B. N., Düzenli, T., (2019). Pozitif Reel Fonksiyonlar için Devre Uygulamaları. DÜMF Mühendislik Dergisi, 10, 2, 457-465.
  • [2] Sharma, A., Soni, T., (2017). A review on passive network synthesis using Cauer form. World Journal of Wireless Devices and Engineering, 1, 1, 39-46.
  • [3] Ishida, M., Fukui, Y., & Ebisutani, K., (1984). Novel active-R synthesis of a driving-point impedance. International Journal of Electronics, 56, 1, 151-158.
  • [4] Ochoa, A., (2016). Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis. In Feedback in analog circuits (pp. 13-34). Springer, Cham.
  • [5] Wunsch, A. D., Hu, S. P., (1996). A closed-form expression for the driving-point impedance of the small inverted L antenna. IEEE Transactions on Antennas and Propagation, 44, 2, 236-242.
  • [6] Richards, P. I., (1947). A special class of functions with positive real part in a half-plane. Duke Mathematical Journal, 14, 3, 777-786.
  • [7] Hazony, D., (1963). Elements of network synthesis. Reinhold, NY, USA.
  • [8] Reza, F. M., (1961). Schwarz’s lemma and linear passive systems. Proc. IRE, 49, 2, 17–23.
  • [9] Örnek, B. N., Düzenli, T., (2019). On boundary analysis for derivative of driving point impedance functions and its circuit applications. IET Circuits, Devices & Systems, 13, 2, 145-152.
  • [10] Örnek, B. N., Düzenli, T., (2018). Boundary Analysis for the Derivative of Driving Point Impedance Functions. IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 9, 1149-1153.
  • [11] Dineen , S., (1989). The Schwarz Lemma. Clarendon Press, USA.
  • [12] Mercer, P. R., (1997). Sharpened versions of the Schwarz lemma. Journal of Mathematical Analysis and Applications, 205, 2, 508-511.
  • [13] Mercer, P. R. (2018). Boundary Schwarz inequalities arising from Rogosinski’s lemma. Journal of Classical Analysis, 12, 93-97.
  • [14] Maz’ya, V., Kresin, G., (2007). SharpReal-Part Theorems: A Unified Approach. Springer.
  • [15] Örnek, B. N., (2015). Carathéodory’s inequality on the boundary. The Pure and Applied Mathematics, 2, 2, 169-178.
  • [16] Örnek, B. N., (2016). The caratheodory inequality on the boundary for holomorphic functions in the unit disc. Journal of Mathematical Physics, Analysis, Geometry, 12, 4, 287-301.
  • [17] Mercer, P. R., (2018). An improved Schwarz Lemma at the boundary. Open Mathematics, 16, 1, 1140-1144.
  • [18] Osserman, R., (2000). A sharp Schwarz inequality on the boundary. Proceedings of the American Mathematical Society, 128, 12, 3513-3517.
  • [19] Azeroǧlu, T. A., Örnek, B. N., (2013). A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations, 58, 4, 571-577.
  • [20] Boas, H. P., (2010). Julius and Julia: Mastering the art of the Schwarz lemma. The American Mathematical Monthly, 117, 9, 770-785.
  • [21] Dubinin, V. N., (2004). The Schwarz inequality on the boundary for functions regular in the disk. Journal of Mathematical Sciences, 122, 6, 3623-3629.
  • [22] Mateljevic, M. (2018) Rigidity of holomorphic mappings & schwarz and jack lemma, Researchgate.
Year 2021, Volume: 12 Issue: 1, 61 - 68, 13.01.2021
https://doi.org/10.24012/dumf.860229

Abstract

References

  • [1] Örnek, B. N., Düzenli, T., (2019). Pozitif Reel Fonksiyonlar için Devre Uygulamaları. DÜMF Mühendislik Dergisi, 10, 2, 457-465.
  • [2] Sharma, A., Soni, T., (2017). A review on passive network synthesis using Cauer form. World Journal of Wireless Devices and Engineering, 1, 1, 39-46.
  • [3] Ishida, M., Fukui, Y., & Ebisutani, K., (1984). Novel active-R synthesis of a driving-point impedance. International Journal of Electronics, 56, 1, 151-158.
  • [4] Ochoa, A., (2016). Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis. In Feedback in analog circuits (pp. 13-34). Springer, Cham.
  • [5] Wunsch, A. D., Hu, S. P., (1996). A closed-form expression for the driving-point impedance of the small inverted L antenna. IEEE Transactions on Antennas and Propagation, 44, 2, 236-242.
  • [6] Richards, P. I., (1947). A special class of functions with positive real part in a half-plane. Duke Mathematical Journal, 14, 3, 777-786.
  • [7] Hazony, D., (1963). Elements of network synthesis. Reinhold, NY, USA.
  • [8] Reza, F. M., (1961). Schwarz’s lemma and linear passive systems. Proc. IRE, 49, 2, 17–23.
  • [9] Örnek, B. N., Düzenli, T., (2019). On boundary analysis for derivative of driving point impedance functions and its circuit applications. IET Circuits, Devices & Systems, 13, 2, 145-152.
  • [10] Örnek, B. N., Düzenli, T., (2018). Boundary Analysis for the Derivative of Driving Point Impedance Functions. IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 9, 1149-1153.
  • [11] Dineen , S., (1989). The Schwarz Lemma. Clarendon Press, USA.
  • [12] Mercer, P. R., (1997). Sharpened versions of the Schwarz lemma. Journal of Mathematical Analysis and Applications, 205, 2, 508-511.
  • [13] Mercer, P. R. (2018). Boundary Schwarz inequalities arising from Rogosinski’s lemma. Journal of Classical Analysis, 12, 93-97.
  • [14] Maz’ya, V., Kresin, G., (2007). SharpReal-Part Theorems: A Unified Approach. Springer.
  • [15] Örnek, B. N., (2015). Carathéodory’s inequality on the boundary. The Pure and Applied Mathematics, 2, 2, 169-178.
  • [16] Örnek, B. N., (2016). The caratheodory inequality on the boundary for holomorphic functions in the unit disc. Journal of Mathematical Physics, Analysis, Geometry, 12, 4, 287-301.
  • [17] Mercer, P. R., (2018). An improved Schwarz Lemma at the boundary. Open Mathematics, 16, 1, 1140-1144.
  • [18] Osserman, R., (2000). A sharp Schwarz inequality on the boundary. Proceedings of the American Mathematical Society, 128, 12, 3513-3517.
  • [19] Azeroǧlu, T. A., Örnek, B. N., (2013). A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations, 58, 4, 571-577.
  • [20] Boas, H. P., (2010). Julius and Julia: Mastering the art of the Schwarz lemma. The American Mathematical Monthly, 117, 9, 770-785.
  • [21] Dubinin, V. N., (2004). The Schwarz inequality on the boundary for functions regular in the disk. Journal of Mathematical Sciences, 122, 6, 3623-3629.
  • [22] Mateljevic, M. (2018) Rigidity of holomorphic mappings & schwarz and jack lemma, Researchgate.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Bülent Nafi Örnek This is me

Timur Düzenli This is me

Publication Date January 13, 2021
Submission Date June 1, 2020
Published in Issue Year 2021 Volume: 12 Issue: 1

Cite

IEEE B. N. Örnek and T. Düzenli, “Rogosinski Lemması ile ilgili Süren Nokta Empedans Fonksiyonları için Carathéodory Eşitsizliği”, DUJE, vol. 12, no. 1, pp. 61–68, 2021, doi: 10.24012/dumf.860229.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456