Research Article
BibTex RIS Cite

Su ısıtma uygulaması için güneşi takip eden parabolik çanak toplayıcısının kullanılması.

Year 2021, Volume: 12 Issue: 2, 247 - 256, 30.03.2021
https://doi.org/10.24012/dumf.784088

Abstract

Bu çalışmada, Diyarbakır ili iklim koşullarında güneşi iki eksende takip eden parabolik çanak kolektörden sıcak su elde edilmesi amaçlanmıştır. Sistemin odak noktasında bakır spiral elemanlı ısı eşanjörü soğurucu olarak tasarlanmıştır. Şebekeden gelen su, absorbırde ısıtılarak sistemden çıkar. Deneysel veriler saat 10: 00'dan 16: 30'a kadar alınmıştır. Kütlesel debinin verimlilik üzerindeki etkisi 0,00187, 0,00217 ve 0,00345 kg/s'lik üç durum dikkate alınarak incelenmiştir. Sonuçlar, en yüksek faydalı ısı miktarının ve termal verimin 0,00345 kg/s'de elde edildiğini gösterdi. Isıl verim değerleri %32-39 olarak belirlenmiştir. Sistemin ekserji verimi de deneysel verilere göre % 5,7 ile 6,3 olarak tespit edilmiştir.

Supporting Institution

Dicle Üniversitesi

Project Number

MÜHENDİSLİK.18.013

References

  • [1] Mahdi, K., & Bellel, N. (2014). Development of a spherical solar collector with a cylindrical receiver. Energy Procedia, 52, 438-448.
  • [2] Sharma, M., Vaghani, J., Bihani, N., Shinde, N. and Gunge, V.C. (2015). Design, fabrication and analysis of helical coil receiver with varying pitch for solar parabolic dish concentrator. International Journal on Theoretical and Applied Research in Mechanical Engineering, 4(2), 49-54.
  • [3] Pavlović, S. R., Bellos, E. A., Stefanović, V. P., Tzivanidis, C., & Stamenković, Z. M. (2016). Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber. Thermal science, 20(4), 1387-1397.
  • [4] Prado, G. O., Vieira, L. G. M., & Damasceno, J. J. R. (2016). Solar dish concentrator for desalting water. Solar Energy, 136, 659-667.
  • [5] Thirunavukkarasu,V and Cheralathan, M. (2016). Receivers of solar parabolic dish collector system for low and medium temperature applications: A review. International Journal of Control Theory and Applications, 9, 333-344.
  • [6] Hijazi, H., Mokhiamar, O., & Elsamni, O. (2016). Mechanical design of a low cost parabolic solar dish concentrator. Alexandria Engineering Journal, 55(1), 1-11.
  • [7] Pavlovic, S., Bellos, E., Le Roux, W. G., Stefanovic, V., & Tzivanidis, C. (2017). Experimental investigation and parametric analysis of a solar thermal dish collector with spiral absorber. Applied Thermal Engineering, 121, 126-135.
  • [8] Stefanovic, V. P., Pavlovic, S. R., Bellos, E., & Tzivanidis, C. (2018). A detailed parametric analysis of a solar dish collector. Sustainable Energy Technologies and Assessments, 25, 99-110.
  • [9] Kumar, A., Sharma, M., Thakur, P., Thakur, V. K., Rahatekar, S. S., & Kumar, R. (2020). A review on exergy analysis of solar parabolic collectors. Solar Energy, 197, 411-432.
  • [10] Pavlović, S. R., Stefanović, V. P., Janković, Ž. M., Bellos, E., & Vasiljević, D. M. (2019). Daily performance of a solar dish collector. Thermal Science, 23(3 Part B), 2107-2115.
  • [11] Narasimha Rao, K.V., Saivesh, V.D. (2019). Effect of variation of mass flow rate on performance of solar parabolic dish collector with dome-cylindrical receiver. International Journal of Mechanical and Production Engineering Research and Development, 9, 965-980.
  • [12] Shanmugam, S., & Christraj, W. (2005). The tracking of the sun for solar paraboloidal dish concentrators. Journal of Solar Energy Engineering, 127(1), 156-160.
  • [13] Tharamuttam, J. K., & Ng, A. K. (2017). Design and development of an automatic solar tracker. Energy Procedia, 143, 629-634.
  • [14] Natarajan, S.K. Thampi, V., Shaw, R., Kumar, V.S., Nandu, R.S., Jayan, V. Rajagopalan, N., Kandasamy, R.K. (2019). Experimental analysis of a two‐axis tracking system for solar parabolic dish collector. International Journal of Energy Research, 43(2), 1012-1018.
  • [15] Parthipan, J., Nagalingeswara, R. B., & Senthilkumar, S. (2016). Design of one axis three position solar tracking system for paraboloidal dish solar collector. Materials Today: Proceedings, 3, 2493-2500.
  • [16] Ciobanu, D., & Jaliu, C. (2014). Innovative tracking system for parabolic dish solar collector. In The 11th IFToMM International Symposium on Science of Mechanisms and Machines, Springer, Cham, pp. 317-328.
  • [17] Bellos, E., Korres, D., Tzivanidis, C., & Antonopoulos, K. A. (2016). Design, simulation and optimization of a compound parabolic collector. Sustainable Energy Technologies and Assessments, 16, 53-63.
  • [18] Kumar, N. S., & Reddy, K. S. (2008). Comparison of receivers for solar dish collector system. Energy Conversion and Management, 49(4), 812-819.
  • [19] Imadojemu, H. E. (1995). Concentrating parabolic collectors: A patent survey. Energy conversion and management, 36(4), 225-237.
  • [20] Kaushika, N. D., & Reddy, K. S. (2000). Performance of a low cost solar paraboloidal dish steam generating system. Energy conversion and management, 41(7), 713-726.
  • [21] Seo, T., Cho, H., Oh, S., Lee, J., Kang, Y., & Han, G. (2009). Performance comparison of dish solar collector system with mirror arrays and receiver shapes. Progress in Computational Fluid Dynamics, 9, 208-216.
  • [22] Li, L., & Dubowsky, S. (2011). A new design approach for solar concentrating parabolic dish based on optimized flexible petals. Mechanism and machine theory, 46(10), 1536-1548.
  • [23] Kalogirou, S. A. (2004). Solar thermal collectors and applications. Progress in energy and combustion science, 30(3), 231-295.
  • [24] Devecioğlu, A.G., Oruç, V. & Tuncer, Z. (2018). Energy and exergy analyses of a solar air heater with wire mesh-covered absorber plate. International Journal of Exergy, 26, 3-20.

Utilization of a sun-tracking parabolic dish collector for water heating application

Year 2021, Volume: 12 Issue: 2, 247 - 256, 30.03.2021
https://doi.org/10.24012/dumf.784088

Abstract

In this study, it is aimed to obtain hot water through a parabolic dish mirror tracking the sun in two axes in climatic conditions of Diyarbakır, Turkey. A heat exchanger of copper spiral element was designed as an absorber on the focus point of the system. Water coming from network exits from the system by heated in the absorber. The experimental data was acquired from 10:00 to 16:30 o’clock. The effect of mass flow rate on efficiency was studied considering three cases of 0.00187, 0.00217 and 0.00345 kg/s. The results indicated that the highest useful heat amount and thermal efficiency were obtained at 0.00345 kg/s. The thermal efficiency values were determined as 32 to 39%. The exergy efficiency of the system was also evaluated as 5.7 to 6.3% according to the experimental data.

Project Number

MÜHENDİSLİK.18.013

References

  • [1] Mahdi, K., & Bellel, N. (2014). Development of a spherical solar collector with a cylindrical receiver. Energy Procedia, 52, 438-448.
  • [2] Sharma, M., Vaghani, J., Bihani, N., Shinde, N. and Gunge, V.C. (2015). Design, fabrication and analysis of helical coil receiver with varying pitch for solar parabolic dish concentrator. International Journal on Theoretical and Applied Research in Mechanical Engineering, 4(2), 49-54.
  • [3] Pavlović, S. R., Bellos, E. A., Stefanović, V. P., Tzivanidis, C., & Stamenković, Z. M. (2016). Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber. Thermal science, 20(4), 1387-1397.
  • [4] Prado, G. O., Vieira, L. G. M., & Damasceno, J. J. R. (2016). Solar dish concentrator for desalting water. Solar Energy, 136, 659-667.
  • [5] Thirunavukkarasu,V and Cheralathan, M. (2016). Receivers of solar parabolic dish collector system for low and medium temperature applications: A review. International Journal of Control Theory and Applications, 9, 333-344.
  • [6] Hijazi, H., Mokhiamar, O., & Elsamni, O. (2016). Mechanical design of a low cost parabolic solar dish concentrator. Alexandria Engineering Journal, 55(1), 1-11.
  • [7] Pavlovic, S., Bellos, E., Le Roux, W. G., Stefanovic, V., & Tzivanidis, C. (2017). Experimental investigation and parametric analysis of a solar thermal dish collector with spiral absorber. Applied Thermal Engineering, 121, 126-135.
  • [8] Stefanovic, V. P., Pavlovic, S. R., Bellos, E., & Tzivanidis, C. (2018). A detailed parametric analysis of a solar dish collector. Sustainable Energy Technologies and Assessments, 25, 99-110.
  • [9] Kumar, A., Sharma, M., Thakur, P., Thakur, V. K., Rahatekar, S. S., & Kumar, R. (2020). A review on exergy analysis of solar parabolic collectors. Solar Energy, 197, 411-432.
  • [10] Pavlović, S. R., Stefanović, V. P., Janković, Ž. M., Bellos, E., & Vasiljević, D. M. (2019). Daily performance of a solar dish collector. Thermal Science, 23(3 Part B), 2107-2115.
  • [11] Narasimha Rao, K.V., Saivesh, V.D. (2019). Effect of variation of mass flow rate on performance of solar parabolic dish collector with dome-cylindrical receiver. International Journal of Mechanical and Production Engineering Research and Development, 9, 965-980.
  • [12] Shanmugam, S., & Christraj, W. (2005). The tracking of the sun for solar paraboloidal dish concentrators. Journal of Solar Energy Engineering, 127(1), 156-160.
  • [13] Tharamuttam, J. K., & Ng, A. K. (2017). Design and development of an automatic solar tracker. Energy Procedia, 143, 629-634.
  • [14] Natarajan, S.K. Thampi, V., Shaw, R., Kumar, V.S., Nandu, R.S., Jayan, V. Rajagopalan, N., Kandasamy, R.K. (2019). Experimental analysis of a two‐axis tracking system for solar parabolic dish collector. International Journal of Energy Research, 43(2), 1012-1018.
  • [15] Parthipan, J., Nagalingeswara, R. B., & Senthilkumar, S. (2016). Design of one axis three position solar tracking system for paraboloidal dish solar collector. Materials Today: Proceedings, 3, 2493-2500.
  • [16] Ciobanu, D., & Jaliu, C. (2014). Innovative tracking system for parabolic dish solar collector. In The 11th IFToMM International Symposium on Science of Mechanisms and Machines, Springer, Cham, pp. 317-328.
  • [17] Bellos, E., Korres, D., Tzivanidis, C., & Antonopoulos, K. A. (2016). Design, simulation and optimization of a compound parabolic collector. Sustainable Energy Technologies and Assessments, 16, 53-63.
  • [18] Kumar, N. S., & Reddy, K. S. (2008). Comparison of receivers for solar dish collector system. Energy Conversion and Management, 49(4), 812-819.
  • [19] Imadojemu, H. E. (1995). Concentrating parabolic collectors: A patent survey. Energy conversion and management, 36(4), 225-237.
  • [20] Kaushika, N. D., & Reddy, K. S. (2000). Performance of a low cost solar paraboloidal dish steam generating system. Energy conversion and management, 41(7), 713-726.
  • [21] Seo, T., Cho, H., Oh, S., Lee, J., Kang, Y., & Han, G. (2009). Performance comparison of dish solar collector system with mirror arrays and receiver shapes. Progress in Computational Fluid Dynamics, 9, 208-216.
  • [22] Li, L., & Dubowsky, S. (2011). A new design approach for solar concentrating parabolic dish based on optimized flexible petals. Mechanism and machine theory, 46(10), 1536-1548.
  • [23] Kalogirou, S. A. (2004). Solar thermal collectors and applications. Progress in energy and combustion science, 30(3), 231-295.
  • [24] Devecioğlu, A.G., Oruç, V. & Tuncer, Z. (2018). Energy and exergy analyses of a solar air heater with wire mesh-covered absorber plate. International Journal of Exergy, 26, 3-20.
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Atilla Gencer Devecioğlu 0000-0001-9174-378X

Muhammed Hatipoğlu This is me

Vedat Oruç 0000-0001-9055-1508

Project Number MÜHENDİSLİK.18.013
Publication Date March 30, 2021
Submission Date August 22, 2020
Published in Issue Year 2021 Volume: 12 Issue: 2

Cite

IEEE A. G. Devecioğlu, M. Hatipoğlu, and V. Oruç, “Utilization of a sun-tracking parabolic dish collector for water heating application”, DUJE, vol. 12, no. 2, pp. 247–256, 2021, doi: 10.24012/dumf.784088.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456