Research Article
BibTex RIS Cite

Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge

Year 2021, Volume: 12 Issue: 5, 783 - 792, 31.12.2021
https://doi.org/10.24012/dumf.1051434

Abstract

This study investigated electrical strain gage technology, which is widely used in experimental stress measurement, on an application. Strain gages are used to precisely measure strain directly in a system. This method is carried out to verify the numerical and analytical calculations performed or to record the strain data generated during the active duty of a system and to investigate the fatigue damage. In particular, verifying numerical calculations in the strength-material recovery optimizations of mass-produced systems contributes to the development of the system. In this study, strain measurement using strain gage and strain measurement technology is presented on an application. Information was given about strain gages. A full bridge wheatstone bridge consisting of 4 linear gages was created on a prototype. The system was tested with a load cell validation. Structural finite element analysis of the prototype and analytical calculation of the fullbridge strain gage connection were performed. The results showed that the measurement with the strain gauge differed 1.20% and 1.40% from the analytical and numerical results, respectively. Thus, precision strain measurement technology was successfully presented in engineering systems.

References

  • [1] K. Hoffmann, “An Introduction to Measurements using Strain Gages,” Hottinger Baldwin Messtechnik GmbH, p. 257, 1989.
  • [2] G. İrsel, “Strength-based design of a fertilizer spreader chassis using computer aided engineering and experimental validation,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2021, doi: 10.1177/0954406221993847.
  • [3] H. K. Çelik, N. Çaglayan, M. Topakci, A. E. W. Rennie, and I. Akinci, “Strength-based design analysis of a Para-Plow tillage tool,” Comput. Electron. Agric., vol. 169, no. December 2019, p. 105168, 2020, doi: 10.1016/j.compag.2019.105168.
  • [4] T. J. Lisle, B. A. Shaw, and R. C. Frazer, “Internal spur gear root bending stress: A comparison of ISO 6336:1996, ISO 6336:2006, VDI 2737:2005, AGMA, ANSYS finite element analysis and strain gauge techniques,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 5, pp. 1713–1720, 2019, doi: 10.1177/0954406218774364.
  • [5] G. İrsel, “Effects of modification on the strength–weight ratio of standard bevel gears,” Mech. Based Des. Struct. Mach., 2021, doi: 10.1080/15397734.2021.1960562.
  • [6] H. Moustabchir, Z. Azari, S. Hariri, and I. Dmytrakh, “Experimental and numerical study of stress-strain state of pressurised cylindrical shells with external defects,” Eng. Fail. Anal., vol. 17, no. 2, pp. 506–514, 2010, doi: 10.1016/j.engfailanal.2009.09.011.
  • [7] H. Yurdem, A. Degirmencioglu, E. Cakir, and E. Gulsoylu, “Measurement of strains induced on a three-bottom moldboard plough under load and comparisons with finite element simulations,” Meas. J. Int. Meas. Confed., vol. 136, pp. 594–602, 2019, doi: 10.1016/j.measurement.2019.01.011.
  • [8] H. K. Celik, A. E. W. Rennie, and I. Akinci, “Design and structural optimisation of a tractor mounted telescopic boom crane,” J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 909–924, 2017, doi: 10.1007/s40430-016-0558-y.
  • [9] H. Ma, J. Wang, G. Li, and J. Qiu, “Fatigue redesign of failed sub frame using stress measuring, FEA and British Standard 7608,” Eng. Fail. Anal., vol. 97, no. January, pp. 103–114, 2019, doi: 10.1016/j.engfailanal.2019.01.032.
  • [10] S. S. Patil, S. Karuppanan, I. Atanasovska, and A. A. Wahab, “Contact stress analysis of helical gear pairs, including frictional coefficients,” Int. J. Mech. Sci., vol. 85, pp. 205–211, 2014, doi: 10.1016/j.ijmecsci.2014.05.013.
  • [11] B. Gao, X. Chen, and G. Chen, “Ratchetting and ratchetting boundary study of pressurized straight low carbon steel pipe under reversed bending,” Int. J. Press. Vessel. Pip., vol. 83, no. 2, pp. 96–106, 2006, doi: 10.1016/j.ijpvp.2005.12.002.
  • [12] T. J. Lisle, B. A. Shaw, and R. C. Frazer, “External spur gear root bending stress: A comparison of ISO 6336:2006, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques,” Mech. Mach. Theory, vol. 111, pp. 1–9, 2017, doi: 10.1016/j.mechmachtheory.2017.01.006.
  • [13] R. A. B. Almeida, D. C. Vaz, A. P. V. Urgueira, and A. R. Janeiro Borges, “Using ring strain sensors to measure dynamic forces in wind-tunnel testing,” Sensors Actuators, A Phys., vol. 185, pp. 44–52, 2012, doi: 10.1016/j.sna.2012.07.024.
  • [14] Y. Lou, J. Wei, and S. Song, “Design and Optimization of a Joint Torque Sensor for Robot Collision Detection,” IEEE Sens. J., vol. 19, no. 16, pp. 6618–6627, 2019, doi: 10.1109/JSEN.2019.2912810.
  • [15] K. Papadopoulos, “Technique for Measurement of,” Wind ENERGY, vol. 3, no. May 1999, pp. 35–65, 2000.
  • [16] M. Bruner, M. Catena, D. Cortis, G. Malavasi, S. Rossi, and M. Testa, “Estimation of the wheel-rail lateral contact force through the analysis of the rail web bending strains,” Meas. J. Int. Meas. Confed., vol. 99, pp. 23–35, 2017, doi: 10.1016/j.measurement.2016.12.015.
  • [17] D. Corminboeuf, “Calibration of bridge standard for strain gauge bridge amplifier,” 17th Int. Congr. Metrol. CIM 2015, vol. 4, pp. 2–6, 2015, doi: 10.1051/metrology/20150004004.
  • [18] S. I. Gavrilenkov, S. S. Gavriushin, and V. A. Godzikovsky, “Multicriteria approach to design of strain gauge force transducers,” J. Phys. Conf. Ser., vol. 1379, no. 1, 2019, doi: 10.1088/1742-6596/1379/1/012010.
  • [19] S. Bošnjak, Z. Petković, N. Zrnić, G. Simić, and A. Simonović, “Cracks, repair and reconstruction of bucket wheel excavator slewing platform,” Eng. Fail. Anal., vol. 16, no. 5, pp. 1631–1642, 2009, doi: 10.1016/j.engfailanal.2008.11.009.
  • [20] H. K. Y. T. K. Sasaki, “Four-Point Bending Test of Determining Stress-Strain Curves Asymmetric between Tension and Compression,” pp. 489–492, 2014, doi: 10.1007/s11340-013-9791-9.
  • [21] A. M. Abou-Rayan, N. N. Khalil, and A. A. Zaky, “Experimental investigation on the flexural behavior of steel cold-formed I-beam with strengthened hollow tubular flanges,” Thin-Walled Struct., vol. 155, no. July, p. 106971, 2020, doi: 10.1016/j.tws.2020.106971.
  • [22] J. Ye, I. Hajirasouliha, and J. Becque, “Experimental investigation of local-flexural interactive buckling of cold-formed steel channel columns,” Thin-Walled Struct., vol. 125, no. July 2017, pp. 245–258, 2018, doi: 10.1016/j.tws.2018.01.020.
  • [23] L. D. V. Anand, D. Hepsiba, S. Palaniappan, B. Sumathy, P. Vijayakumar, and S. S. Rani, “Automatic strain sensing measurement on steel beam using strain gauge,” Mater. Today Proc., vol. 45, pp. 2578–2580, 2021, doi: 10.1016/j.matpr.2020.11.274.
  • [24] V. Goga, “Finite Element Model of the Strain Gauge for Determining 1 Introduction 2 Principle of the Strain Gauge Measurement,” Trans. VŠB – Tech. Univ. Ostrava, Mech. Ser. No., vol. LIX, no. 2, pp. 67–73, 2013.
Year 2021, Volume: 12 Issue: 5, 783 - 792, 31.12.2021
https://doi.org/10.24012/dumf.1051434

Abstract

References

  • [1] K. Hoffmann, “An Introduction to Measurements using Strain Gages,” Hottinger Baldwin Messtechnik GmbH, p. 257, 1989.
  • [2] G. İrsel, “Strength-based design of a fertilizer spreader chassis using computer aided engineering and experimental validation,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2021, doi: 10.1177/0954406221993847.
  • [3] H. K. Çelik, N. Çaglayan, M. Topakci, A. E. W. Rennie, and I. Akinci, “Strength-based design analysis of a Para-Plow tillage tool,” Comput. Electron. Agric., vol. 169, no. December 2019, p. 105168, 2020, doi: 10.1016/j.compag.2019.105168.
  • [4] T. J. Lisle, B. A. Shaw, and R. C. Frazer, “Internal spur gear root bending stress: A comparison of ISO 6336:1996, ISO 6336:2006, VDI 2737:2005, AGMA, ANSYS finite element analysis and strain gauge techniques,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 5, pp. 1713–1720, 2019, doi: 10.1177/0954406218774364.
  • [5] G. İrsel, “Effects of modification on the strength–weight ratio of standard bevel gears,” Mech. Based Des. Struct. Mach., 2021, doi: 10.1080/15397734.2021.1960562.
  • [6] H. Moustabchir, Z. Azari, S. Hariri, and I. Dmytrakh, “Experimental and numerical study of stress-strain state of pressurised cylindrical shells with external defects,” Eng. Fail. Anal., vol. 17, no. 2, pp. 506–514, 2010, doi: 10.1016/j.engfailanal.2009.09.011.
  • [7] H. Yurdem, A. Degirmencioglu, E. Cakir, and E. Gulsoylu, “Measurement of strains induced on a three-bottom moldboard plough under load and comparisons with finite element simulations,” Meas. J. Int. Meas. Confed., vol. 136, pp. 594–602, 2019, doi: 10.1016/j.measurement.2019.01.011.
  • [8] H. K. Celik, A. E. W. Rennie, and I. Akinci, “Design and structural optimisation of a tractor mounted telescopic boom crane,” J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 3, pp. 909–924, 2017, doi: 10.1007/s40430-016-0558-y.
  • [9] H. Ma, J. Wang, G. Li, and J. Qiu, “Fatigue redesign of failed sub frame using stress measuring, FEA and British Standard 7608,” Eng. Fail. Anal., vol. 97, no. January, pp. 103–114, 2019, doi: 10.1016/j.engfailanal.2019.01.032.
  • [10] S. S. Patil, S. Karuppanan, I. Atanasovska, and A. A. Wahab, “Contact stress analysis of helical gear pairs, including frictional coefficients,” Int. J. Mech. Sci., vol. 85, pp. 205–211, 2014, doi: 10.1016/j.ijmecsci.2014.05.013.
  • [11] B. Gao, X. Chen, and G. Chen, “Ratchetting and ratchetting boundary study of pressurized straight low carbon steel pipe under reversed bending,” Int. J. Press. Vessel. Pip., vol. 83, no. 2, pp. 96–106, 2006, doi: 10.1016/j.ijpvp.2005.12.002.
  • [12] T. J. Lisle, B. A. Shaw, and R. C. Frazer, “External spur gear root bending stress: A comparison of ISO 6336:2006, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques,” Mech. Mach. Theory, vol. 111, pp. 1–9, 2017, doi: 10.1016/j.mechmachtheory.2017.01.006.
  • [13] R. A. B. Almeida, D. C. Vaz, A. P. V. Urgueira, and A. R. Janeiro Borges, “Using ring strain sensors to measure dynamic forces in wind-tunnel testing,” Sensors Actuators, A Phys., vol. 185, pp. 44–52, 2012, doi: 10.1016/j.sna.2012.07.024.
  • [14] Y. Lou, J. Wei, and S. Song, “Design and Optimization of a Joint Torque Sensor for Robot Collision Detection,” IEEE Sens. J., vol. 19, no. 16, pp. 6618–6627, 2019, doi: 10.1109/JSEN.2019.2912810.
  • [15] K. Papadopoulos, “Technique for Measurement of,” Wind ENERGY, vol. 3, no. May 1999, pp. 35–65, 2000.
  • [16] M. Bruner, M. Catena, D. Cortis, G. Malavasi, S. Rossi, and M. Testa, “Estimation of the wheel-rail lateral contact force through the analysis of the rail web bending strains,” Meas. J. Int. Meas. Confed., vol. 99, pp. 23–35, 2017, doi: 10.1016/j.measurement.2016.12.015.
  • [17] D. Corminboeuf, “Calibration of bridge standard for strain gauge bridge amplifier,” 17th Int. Congr. Metrol. CIM 2015, vol. 4, pp. 2–6, 2015, doi: 10.1051/metrology/20150004004.
  • [18] S. I. Gavrilenkov, S. S. Gavriushin, and V. A. Godzikovsky, “Multicriteria approach to design of strain gauge force transducers,” J. Phys. Conf. Ser., vol. 1379, no. 1, 2019, doi: 10.1088/1742-6596/1379/1/012010.
  • [19] S. Bošnjak, Z. Petković, N. Zrnić, G. Simić, and A. Simonović, “Cracks, repair and reconstruction of bucket wheel excavator slewing platform,” Eng. Fail. Anal., vol. 16, no. 5, pp. 1631–1642, 2009, doi: 10.1016/j.engfailanal.2008.11.009.
  • [20] H. K. Y. T. K. Sasaki, “Four-Point Bending Test of Determining Stress-Strain Curves Asymmetric between Tension and Compression,” pp. 489–492, 2014, doi: 10.1007/s11340-013-9791-9.
  • [21] A. M. Abou-Rayan, N. N. Khalil, and A. A. Zaky, “Experimental investigation on the flexural behavior of steel cold-formed I-beam with strengthened hollow tubular flanges,” Thin-Walled Struct., vol. 155, no. July, p. 106971, 2020, doi: 10.1016/j.tws.2020.106971.
  • [22] J. Ye, I. Hajirasouliha, and J. Becque, “Experimental investigation of local-flexural interactive buckling of cold-formed steel channel columns,” Thin-Walled Struct., vol. 125, no. July 2017, pp. 245–258, 2018, doi: 10.1016/j.tws.2018.01.020.
  • [23] L. D. V. Anand, D. Hepsiba, S. Palaniappan, B. Sumathy, P. Vijayakumar, and S. S. Rani, “Automatic strain sensing measurement on steel beam using strain gauge,” Mater. Today Proc., vol. 45, pp. 2578–2580, 2021, doi: 10.1016/j.matpr.2020.11.274.
  • [24] V. Goga, “Finite Element Model of the Strain Gauge for Determining 1 Introduction 2 Principle of the Strain Gauge Measurement,” Trans. VŠB – Tech. Univ. Ostrava, Mech. Ser. No., vol. LIX, no. 2, pp. 67–73, 2013.
There are 24 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Gürkan İrsel This is me 0000-0003-0828-6560

Publication Date December 31, 2021
Submission Date October 17, 2021
Published in Issue Year 2021 Volume: 12 Issue: 5

Cite

IEEE G. İrsel, “Research on electrical strain gages and experimental stress analysis: Case study for a full wheatstone bridge”, DUJE, vol. 12, no. 5, pp. 783–792, 2021, doi: 10.24012/dumf.1051434.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456