Research Article
BibTex RIS Cite

Farklı Kalınlıktaki Modifiye Asfalt Yol Kaplamalarının Gerilme-Deformasyon ve Ses Yutma Performans Özelliklerinin İncelenmesi

Year 2022, Volume: 13 Issue: 2, 319 - 328, 28.06.2022
https://doi.org/10.24012/dumf.1062438

Abstract

Özet

Bitümlü sıcak karışım asfalt (BSK) ile hazırlanana asfalt kaplama, yük ve yolcu trafiğinde tercih edilmektedir ve esnek üst yapı tiplerinden biri olarak sıklıkla kullanılmaktadır. Bu doğrultuda, yol kaplamalarında en çok kullanılan karışım tiplerinden biri olan BSK kaplamanın performans özellikleri çok büyük önem arz etmektedir. Yolun hizmet ömrü boyunca göstermesi beklenen performansı sağlaması gerekmektedir. BSK; yüksek karışım tasarımı, konforlu, güvenli ve bozulmaya karşı dirençli olmalıdır. Ayrıca yol imalatında kullanılan hammaddelerin kısıtlı olması da göz önünde tutulduğunda, asfalt yolların çevresel koşullara (iklim, trafik yoğunluğu, vs..) karşı daha uzun süreli hizmet verebilmesi için asfalt yol karışım içeriğinde katkı malzemelerinin kullanmasına ihtiyaç duyulmuştur. Katkı maddeleri arasında Stiren Bütadien Stiren (SBS) polimerleri yaygın olarak kullanılmaktadır. Bu çalışmada, farklı kalınlıklarda BSK ile hazırlanan SBS modifiyeli asfalt beton kaplamaların değişik kalınlıklarda gerilme ve deformasyon davranışı sonlu elemanlar metodu uygulanarak numerik analiz yöntemi ile sayısal analizi karşılaştırmalı olarak incelenmiştir. Bu araştırmada, kalınlık artışının ses yutma katsayısına olan etkisi ve deformasyona olan etkisi araştırılmıştır. Asfalt kaplamalardaki kalınlık artışının, düşük frekanslardaki ses yutma performansını arttırabileceği anlaşılmıştır. Kalınlık artışının deformasyon oranını ciddi düzeyde azaltabildiği numerik analiz sonucunda tespit edilmiştir.

References

  • [1] Lu, X. and Isacsson, U., Laboratory study on the low temperature physical hardening of conventional and polymer modified bitumens, Construction and Building Materials, 14, 79-88 (2000), https://doi.org/10.1016/S0950-0618(00)00012-X
  • [2] Navarro, F.J., Partal, P., Martinez-Boza, F., Valencia, C. and Gallegos, C., Rheological characteristics of ground tire rubber-modified bitumens, Chemical Engineering Journal, 89, 53-61 (2002), https://doi.org/10.1016/S1385-8947(02)00023-2
  • [3] Airey, G.D., Rheological properties of styrene butadiene styrene polymer modified road bitumens, Fuel, 82, 14, 1709- 1719 (2002), https://doi.org/10.1016/S0016-2361(03)00146-7
  • [4] Aglan, H., Othman, A., Figueroa, L. and Rollings, R., Effect of styrene-butadiene- styrene block copolymer on fatigue crack propagation behavior of asphalt concrete mixtures, Transportation Research Record, 1417, 178-186. (1993).
  • [5] Khattak, M.J. and Baladi, G.Y., Engineering properties of polymer – modified asphalt mixtures, Transportation Research Record, 1638, 12-22. (1998), https://doi.org/10.3141/1638-02
  • [6] Peiliang Cong, Yihan Zhanga, Ning Liua, Investigation of the Properties of asphalt mixtures incorporating reclaimed SBS modified asphalt pavement, Construction and Building Materials, 113, 334–340 (2016), https://doi.org/10.1016/j.conbuildmat.2016.03.059
  • [7] Samuel Zapién-Castillo, José Luis Rivera-Armenta, , María Yolanda Chávez-Cinco, Beatriz Adriana Salazar-Cruz, Ana María Mendoza-Martínez, Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite, Construction and Building Materials, 106, 349–356 (2016), https://doi.org/10.1016/j.conbuildmat.2015.12.099
  • [8] Mulder, E.A. and Whiteoak, C.D., An Objective Assessment of the In-Service Performance Of Thermoplastic Rubber Modified Bitumens for Road Applications, Proceedings, 16th Arrb Conference, Perth, Western Australia, 16, 2, 309-334 (1992).
  • [9] Vonk, W.C., Phillips, M.C. and Roele, M., Ageing Resistance of Bituminous Road Binders: Benefits of SBS Modification, Proceedings of 5th Eorobitume Congress, Stockholm, IA, 156-160 (1993).
  • [10] Karakas, A.S., Kuloglu, N., Kok, B.V., Yilmaz, M., The evaluation of the field performance of the neat and SBS modified hot mixture asphalt, Construction and Building Materials, 98, 678-684, (2015), https://doi.org/10.1016/j.conbuildmat.2015.08.140
  • [11] Xiaodi Hua, Shen Zhonga and Lubinda F. Walubitab, Three-dimensional modelling of multilayered asphalt concrete pavement structures: strain responses and permanent deformation, Road Materials and Pavement Design, 16, 3, (2015), https://doi.org/10.1080/14680629.2015.1028968
  • [12] Prasad Vijapure, Prateek Shurpali, Pawan Agarwal, Srinivas Allapur, Finite Element Analysis of Flexible Pavement, International Journal of Computer & Mathematical Sciences, 4, 5, (2015).
  • [13] Yingchun Caia, Ali Sangghalehb, Ernian Panb, Effect of anisotropic base/interlayer on the mechanistic responses of layered pavements, Computers and Geotechnics, 65, 250–257, (2015), https://doi.org/10.1016/j.compgeo.2014.12.014
  • [14] Ankit Gupta, Praveen Kumar & Rajat Rastogi, Mechanistic–empirical approach for design of low volume pavements, International Journal of Pavement Engineering, 16, 9, (2015), https://doi.org/10.1080/10298436.2014.960999
  • [15] ISO 9613–2:1996, Acoustics, Attenuation of sound during propagation outdoors, Part 2: General method of calculation
  • [16] Bozkurt, T.S., Preparation of Industrial Noise Mapping and Improvement of Environmental Quality, Current Pollution Reports (2021), Volume 7, Pages: 325 - 343, https://doi.org/10.1007/s40726-021-00195-3
  • [17] Bozkurt, T.S., Demirkale, S.Y., The field study and numerical simulation of industrial noise mapping, Journal of Building Engineering, Volume 9, January 2017, Pages 60-75, https://doi.org/10.1016/j.jobe.2016.11.007
  • [18] World Health Organization, (2018), Environmental Noise Guidelines for the European Region, ISBN 978 92 890 5356 3
  • [19] Chen, D., Ling C., Wang T., Su, Q., Ye, A., Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions, Construction and Building Materials 173 (2018) 801–810, https://doi.org/10.1016/j.conbuildmat.2018.04.062
  • [20] Kleizienė R., Šernas O., Vaitkus A., Simanavičienė R., Asphalt Pavement Acoustic Performance Model. Sustainability. 2019; 11(10):2938. https://doi.org/10.3390/su11102938
  • [21] Gilani, T.A., Mir, M.S. A study on the assessment of traffic noise induced annoyance and awareness levels about the potential health effects among residents living around a noise-sensitive area. Environ Sci Pollut Res 28, 63045–63064 (2021). https://doi.org/10.1007/s11356-021-15208-3
  • [22] Grangeiro de Barros, A., Kampen, J.K., Vuye, C., The Impact of Thin Asphalt Layers as a Road Traffic Noise Intervention in an Urban Environment, Sustainability 2021, 13, 12561. https://doi.org/10.3390/su132212561
  • [23] Karayolları Teknik Şartnamesi, Yol Altyapısı, Sanat Yapıları, Köprü ve Tüneller, Üstyapı ve Çeşitli İşler, Karayolları Genel Müdürlüğü, Ankara, 2013
  • [24] Karakas A.S., Bozkurt T.S., Sayin B., and Ortes F., An assessment of SBS modified asphalt concrete pavements performance features performing numerical analysis, AIP Conference Proceedings 1863, 540002 (2017) https://doi.org/10.1063/1.4992679
  • [25] ISO 354:2003, Acoustics —Measurement of sound absorption in a reverberation room
  • [26] ISO 10534-2, Acoustics — Determination of sound absorption coefficient and impedance in impedance tubes — Part 2: Transfer-function method
  • [27] Everest, F., A. Pohlmann, K., C., (2009), Master Handbook of Acoustics, McGraw-Hill, Beşinci Baskı, ISBN: 978-0-07-160333-1
  • [28] ANSYS Workbench, version 14.5. ANSYS Inc., Canonsburg, PA, (2012).
  • [29] Reena R. Patel, Guillermo Riveros, Edward Perkins, A Transdisciplinary Approach for Analyzing Stress Flow Patterns in Biostructures, Mathematical and Computational Applications 24(2):47, April 2019, DOI:10.3390/mca24020047
  • [30] Gere, JM., and Timoshenko, SP. Mechanics of Materials, Second Edition, Wadsworth, Inc., Belmont, California, 1984; p.351-355, 414-415.
  • [31] Karakaş, A.S., Sayin, B., Kuloglu, N. The changes in the mechanical properties of neat and SBS-modified HMA pavements due to traffic loads and environmental effects over a one-year period. Construction and Building Materials, 71, 406–415 (2014), https://doi.org/10.1016/j.conbuildmat.2014.08.060
  • [32] Ginn K. B., (1978), ARCHITECTURAL ACOUSTICS, Brüel δ Kjaer, ikinci Baskı, ISBN: 87 87355 24 8
  • [33] Mehta, M., Johnson, J. and Rocaford J., (1999), Architectural Acoustics Principles and Design, Prentice Hall, ISBN: 0-13-793795-4
  • [34] Barron, R. F., (2003), Industrial Noise Control and Acoustics, Marcel Dekker Inc., Newyork, Basel. ISBN:0-8247-0701-X
  • [35] Beranek, L. L., Ver, I. L., (2006), Noise and Vibration Control Engineering Principles and Applications, John Wiley&Sons, Inc., ISBN-13: 978-0471-44942-3 ve ISBN-10: 0471-44942-3
  • [36] Jaramillo, A. M., Stell, C., (2015), Architectural Acoustics, Taylor & Francis Group, ISBN: 978-1-315-75284-6 (ebk)
  • [37] ISO 717-1:2013, Acoustics — Rating of sound insulation in buildings and of building elements — Part 1: Airborne sound insulation
  • [38] Mikhailenko, P., Piao, Z., Kakar, M.R., Athari, S., Bueno, M., Poulikakos, L.D., Effect of waste PET and CR as sand replacement on the durability and acoustical properties of semi dense asphalt (SDA) mixtures, Sustainable Materials and Technologies 29 (2021) e00295, https://doi.org/10.1016/j.susmat.2021.e00295
  • [39] Chu L., Fwa, T. F., Tan, K.H., Evaluation of wearing course mix designs on sound absorption improvement of porous asphalt pavement, Construction and Building Materials, Volume 141, 15 June 2017, Pages 402-409, https://doi.org/10.1016/j.conbuildmat.2017.03.027
  • [40] Shen, D.-H., Wu, D.-H., Du, J.-C.: Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Constr. Build. Mater. 23(1), 453–461 (2009). https://doi.org/10.1016/j.conbuildmat.2007.11.001
  • [41] Wang, Z., Xie, J., Gao, L., Liu, M., Liu, Y., Improvement of acoustic model and structural optimization design of porous asphalt concrete based on meso-structure research, Volume 265, 30 December 2020, 120327, https://doi.org/10.1016/j.conbuildmat.2020.120327
  • [42] Peng, B., Han, S., Han X., (2021): Laboratory and field evaluation of noise characteristics of porous asphalt pavement, International Journal of Pavement Engineering, https://doi.org/10.1080/10298436.2021.1893319
  • [43] Gardziejczyk, W., Jaskula, P., Ejsmont, J.A., Motylewicz, M., Stienss, M., Mioduszewski, P., Gierasimiuk, P., Zawadzki, M., Investigation of Acoustic Properties of Poroelastic Asphalt Mixtures in Laboratory and Field Conditions, Materials 2021, 14, 2649, https://doi.org/10.3390/ma14102649
  • [44] Kolodziej, V.M., Triches, J.S. Ledezma, G.C., Carlesso, L.M., Jardin, L.M., Knabben, R.M., Functional and durability properties evaluation of open graded asphalt mixes, Transport Infrastructure and Systems, 2017, Taylor & Francis Group, London, ISBN 978-1-138-03009-1
  • [45] Morcillo, M.A., Hidalgo, M.E., Pastrana, M.d.C., García, D., Torres, J., Arroyo, M.B., LIFE SOUNDLESS: New Generation of Eco-Friendly Asphalt with Recycled Materials. Environments 2019, 6, 48. https://doi.org/10.3390/environments6040048
  • [46] Mavridou, S., Kehagia, F., Environmental Noise Performance of Rubberized Asphalt Mixtures: Lamia’s case study, Procedia Environmental Sciences 38 (2017) 804 – 811, https://doi.org/10.1016/j.proenv.2017.03.165
  • [47] Vázquez, V.F., Terán, F., Huertas, P., Paje, S.E., Asphalt Pavement with High Content of Crumb Rubber. Acoustic Assessment, WASTES: Solutions, Treatments and Opportunities, 4th International Conference, September 2017, ISSN 2183-0568
  • [48] Wang, W., Cheng, Y., Chen, H., Tan, G., Lv, Z., Bai, Y., Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber. Sustainability 2019, 11, 5282. https://doi.org/10.3390/su11195282
  • [49] Kalauni, K., Pawar, S.J., A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J Porous Mater 26, 1795–1819 (2019). https://doi.org/10.1007/s10934-019-00774-2
  • [50] Li, M., Keulen, W.N., Tijs, E., Ven, M.V.D., Molenaar, A., Sound absorption measurement of road surface with in situ technology, Applied Acoustics 88 (2015) 12–2, http://dx.doi.org/10.1016/j.apacoust.2014.07.009
  • [51] Vaitkus, A., Čygas, D., Vorobjovas, V., Andriejauskas, T., Traffic/Road Noise Mitigation under Modified Asphalt Pavements, Transportation Research Procedia 14 (2016) 2698 – 2703, https://doi.org/10.1016/j.trpro.2016.05.446
  • [52] Vaitkus A., Andriejauskas T., Vorobjovas V., Jagniatinskis A., Fiks, B., Zofka, E., Asphalt wearing course optimization for road traffic noise reduction, Construction and Building Materials, Volume 152, 15 October 2017, Pages 345-356, https://doi.org/10.1016/j.conbuildmat.2017.06.130
Year 2022, Volume: 13 Issue: 2, 319 - 328, 28.06.2022
https://doi.org/10.24012/dumf.1062438

Abstract

References

  • [1] Lu, X. and Isacsson, U., Laboratory study on the low temperature physical hardening of conventional and polymer modified bitumens, Construction and Building Materials, 14, 79-88 (2000), https://doi.org/10.1016/S0950-0618(00)00012-X
  • [2] Navarro, F.J., Partal, P., Martinez-Boza, F., Valencia, C. and Gallegos, C., Rheological characteristics of ground tire rubber-modified bitumens, Chemical Engineering Journal, 89, 53-61 (2002), https://doi.org/10.1016/S1385-8947(02)00023-2
  • [3] Airey, G.D., Rheological properties of styrene butadiene styrene polymer modified road bitumens, Fuel, 82, 14, 1709- 1719 (2002), https://doi.org/10.1016/S0016-2361(03)00146-7
  • [4] Aglan, H., Othman, A., Figueroa, L. and Rollings, R., Effect of styrene-butadiene- styrene block copolymer on fatigue crack propagation behavior of asphalt concrete mixtures, Transportation Research Record, 1417, 178-186. (1993).
  • [5] Khattak, M.J. and Baladi, G.Y., Engineering properties of polymer – modified asphalt mixtures, Transportation Research Record, 1638, 12-22. (1998), https://doi.org/10.3141/1638-02
  • [6] Peiliang Cong, Yihan Zhanga, Ning Liua, Investigation of the Properties of asphalt mixtures incorporating reclaimed SBS modified asphalt pavement, Construction and Building Materials, 113, 334–340 (2016), https://doi.org/10.1016/j.conbuildmat.2016.03.059
  • [7] Samuel Zapién-Castillo, José Luis Rivera-Armenta, , María Yolanda Chávez-Cinco, Beatriz Adriana Salazar-Cruz, Ana María Mendoza-Martínez, Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite, Construction and Building Materials, 106, 349–356 (2016), https://doi.org/10.1016/j.conbuildmat.2015.12.099
  • [8] Mulder, E.A. and Whiteoak, C.D., An Objective Assessment of the In-Service Performance Of Thermoplastic Rubber Modified Bitumens for Road Applications, Proceedings, 16th Arrb Conference, Perth, Western Australia, 16, 2, 309-334 (1992).
  • [9] Vonk, W.C., Phillips, M.C. and Roele, M., Ageing Resistance of Bituminous Road Binders: Benefits of SBS Modification, Proceedings of 5th Eorobitume Congress, Stockholm, IA, 156-160 (1993).
  • [10] Karakas, A.S., Kuloglu, N., Kok, B.V., Yilmaz, M., The evaluation of the field performance of the neat and SBS modified hot mixture asphalt, Construction and Building Materials, 98, 678-684, (2015), https://doi.org/10.1016/j.conbuildmat.2015.08.140
  • [11] Xiaodi Hua, Shen Zhonga and Lubinda F. Walubitab, Three-dimensional modelling of multilayered asphalt concrete pavement structures: strain responses and permanent deformation, Road Materials and Pavement Design, 16, 3, (2015), https://doi.org/10.1080/14680629.2015.1028968
  • [12] Prasad Vijapure, Prateek Shurpali, Pawan Agarwal, Srinivas Allapur, Finite Element Analysis of Flexible Pavement, International Journal of Computer & Mathematical Sciences, 4, 5, (2015).
  • [13] Yingchun Caia, Ali Sangghalehb, Ernian Panb, Effect of anisotropic base/interlayer on the mechanistic responses of layered pavements, Computers and Geotechnics, 65, 250–257, (2015), https://doi.org/10.1016/j.compgeo.2014.12.014
  • [14] Ankit Gupta, Praveen Kumar & Rajat Rastogi, Mechanistic–empirical approach for design of low volume pavements, International Journal of Pavement Engineering, 16, 9, (2015), https://doi.org/10.1080/10298436.2014.960999
  • [15] ISO 9613–2:1996, Acoustics, Attenuation of sound during propagation outdoors, Part 2: General method of calculation
  • [16] Bozkurt, T.S., Preparation of Industrial Noise Mapping and Improvement of Environmental Quality, Current Pollution Reports (2021), Volume 7, Pages: 325 - 343, https://doi.org/10.1007/s40726-021-00195-3
  • [17] Bozkurt, T.S., Demirkale, S.Y., The field study and numerical simulation of industrial noise mapping, Journal of Building Engineering, Volume 9, January 2017, Pages 60-75, https://doi.org/10.1016/j.jobe.2016.11.007
  • [18] World Health Organization, (2018), Environmental Noise Guidelines for the European Region, ISBN 978 92 890 5356 3
  • [19] Chen, D., Ling C., Wang T., Su, Q., Ye, A., Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions, Construction and Building Materials 173 (2018) 801–810, https://doi.org/10.1016/j.conbuildmat.2018.04.062
  • [20] Kleizienė R., Šernas O., Vaitkus A., Simanavičienė R., Asphalt Pavement Acoustic Performance Model. Sustainability. 2019; 11(10):2938. https://doi.org/10.3390/su11102938
  • [21] Gilani, T.A., Mir, M.S. A study on the assessment of traffic noise induced annoyance and awareness levels about the potential health effects among residents living around a noise-sensitive area. Environ Sci Pollut Res 28, 63045–63064 (2021). https://doi.org/10.1007/s11356-021-15208-3
  • [22] Grangeiro de Barros, A., Kampen, J.K., Vuye, C., The Impact of Thin Asphalt Layers as a Road Traffic Noise Intervention in an Urban Environment, Sustainability 2021, 13, 12561. https://doi.org/10.3390/su132212561
  • [23] Karayolları Teknik Şartnamesi, Yol Altyapısı, Sanat Yapıları, Köprü ve Tüneller, Üstyapı ve Çeşitli İşler, Karayolları Genel Müdürlüğü, Ankara, 2013
  • [24] Karakas A.S., Bozkurt T.S., Sayin B., and Ortes F., An assessment of SBS modified asphalt concrete pavements performance features performing numerical analysis, AIP Conference Proceedings 1863, 540002 (2017) https://doi.org/10.1063/1.4992679
  • [25] ISO 354:2003, Acoustics —Measurement of sound absorption in a reverberation room
  • [26] ISO 10534-2, Acoustics — Determination of sound absorption coefficient and impedance in impedance tubes — Part 2: Transfer-function method
  • [27] Everest, F., A. Pohlmann, K., C., (2009), Master Handbook of Acoustics, McGraw-Hill, Beşinci Baskı, ISBN: 978-0-07-160333-1
  • [28] ANSYS Workbench, version 14.5. ANSYS Inc., Canonsburg, PA, (2012).
  • [29] Reena R. Patel, Guillermo Riveros, Edward Perkins, A Transdisciplinary Approach for Analyzing Stress Flow Patterns in Biostructures, Mathematical and Computational Applications 24(2):47, April 2019, DOI:10.3390/mca24020047
  • [30] Gere, JM., and Timoshenko, SP. Mechanics of Materials, Second Edition, Wadsworth, Inc., Belmont, California, 1984; p.351-355, 414-415.
  • [31] Karakaş, A.S., Sayin, B., Kuloglu, N. The changes in the mechanical properties of neat and SBS-modified HMA pavements due to traffic loads and environmental effects over a one-year period. Construction and Building Materials, 71, 406–415 (2014), https://doi.org/10.1016/j.conbuildmat.2014.08.060
  • [32] Ginn K. B., (1978), ARCHITECTURAL ACOUSTICS, Brüel δ Kjaer, ikinci Baskı, ISBN: 87 87355 24 8
  • [33] Mehta, M., Johnson, J. and Rocaford J., (1999), Architectural Acoustics Principles and Design, Prentice Hall, ISBN: 0-13-793795-4
  • [34] Barron, R. F., (2003), Industrial Noise Control and Acoustics, Marcel Dekker Inc., Newyork, Basel. ISBN:0-8247-0701-X
  • [35] Beranek, L. L., Ver, I. L., (2006), Noise and Vibration Control Engineering Principles and Applications, John Wiley&Sons, Inc., ISBN-13: 978-0471-44942-3 ve ISBN-10: 0471-44942-3
  • [36] Jaramillo, A. M., Stell, C., (2015), Architectural Acoustics, Taylor & Francis Group, ISBN: 978-1-315-75284-6 (ebk)
  • [37] ISO 717-1:2013, Acoustics — Rating of sound insulation in buildings and of building elements — Part 1: Airborne sound insulation
  • [38] Mikhailenko, P., Piao, Z., Kakar, M.R., Athari, S., Bueno, M., Poulikakos, L.D., Effect of waste PET and CR as sand replacement on the durability and acoustical properties of semi dense asphalt (SDA) mixtures, Sustainable Materials and Technologies 29 (2021) e00295, https://doi.org/10.1016/j.susmat.2021.e00295
  • [39] Chu L., Fwa, T. F., Tan, K.H., Evaluation of wearing course mix designs on sound absorption improvement of porous asphalt pavement, Construction and Building Materials, Volume 141, 15 June 2017, Pages 402-409, https://doi.org/10.1016/j.conbuildmat.2017.03.027
  • [40] Shen, D.-H., Wu, D.-H., Du, J.-C.: Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Constr. Build. Mater. 23(1), 453–461 (2009). https://doi.org/10.1016/j.conbuildmat.2007.11.001
  • [41] Wang, Z., Xie, J., Gao, L., Liu, M., Liu, Y., Improvement of acoustic model and structural optimization design of porous asphalt concrete based on meso-structure research, Volume 265, 30 December 2020, 120327, https://doi.org/10.1016/j.conbuildmat.2020.120327
  • [42] Peng, B., Han, S., Han X., (2021): Laboratory and field evaluation of noise characteristics of porous asphalt pavement, International Journal of Pavement Engineering, https://doi.org/10.1080/10298436.2021.1893319
  • [43] Gardziejczyk, W., Jaskula, P., Ejsmont, J.A., Motylewicz, M., Stienss, M., Mioduszewski, P., Gierasimiuk, P., Zawadzki, M., Investigation of Acoustic Properties of Poroelastic Asphalt Mixtures in Laboratory and Field Conditions, Materials 2021, 14, 2649, https://doi.org/10.3390/ma14102649
  • [44] Kolodziej, V.M., Triches, J.S. Ledezma, G.C., Carlesso, L.M., Jardin, L.M., Knabben, R.M., Functional and durability properties evaluation of open graded asphalt mixes, Transport Infrastructure and Systems, 2017, Taylor & Francis Group, London, ISBN 978-1-138-03009-1
  • [45] Morcillo, M.A., Hidalgo, M.E., Pastrana, M.d.C., García, D., Torres, J., Arroyo, M.B., LIFE SOUNDLESS: New Generation of Eco-Friendly Asphalt with Recycled Materials. Environments 2019, 6, 48. https://doi.org/10.3390/environments6040048
  • [46] Mavridou, S., Kehagia, F., Environmental Noise Performance of Rubberized Asphalt Mixtures: Lamia’s case study, Procedia Environmental Sciences 38 (2017) 804 – 811, https://doi.org/10.1016/j.proenv.2017.03.165
  • [47] Vázquez, V.F., Terán, F., Huertas, P., Paje, S.E., Asphalt Pavement with High Content of Crumb Rubber. Acoustic Assessment, WASTES: Solutions, Treatments and Opportunities, 4th International Conference, September 2017, ISSN 2183-0568
  • [48] Wang, W., Cheng, Y., Chen, H., Tan, G., Lv, Z., Bai, Y., Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber. Sustainability 2019, 11, 5282. https://doi.org/10.3390/su11195282
  • [49] Kalauni, K., Pawar, S.J., A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. J Porous Mater 26, 1795–1819 (2019). https://doi.org/10.1007/s10934-019-00774-2
  • [50] Li, M., Keulen, W.N., Tijs, E., Ven, M.V.D., Molenaar, A., Sound absorption measurement of road surface with in situ technology, Applied Acoustics 88 (2015) 12–2, http://dx.doi.org/10.1016/j.apacoust.2014.07.009
  • [51] Vaitkus, A., Čygas, D., Vorobjovas, V., Andriejauskas, T., Traffic/Road Noise Mitigation under Modified Asphalt Pavements, Transportation Research Procedia 14 (2016) 2698 – 2703, https://doi.org/10.1016/j.trpro.2016.05.446
  • [52] Vaitkus A., Andriejauskas T., Vorobjovas V., Jagniatinskis A., Fiks, B., Zofka, E., Asphalt wearing course optimization for road traffic noise reduction, Construction and Building Materials, Volume 152, 15 October 2017, Pages 345-356, https://doi.org/10.1016/j.conbuildmat.2017.06.130
There are 52 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ahmet Sertaç Karakaş 0000-0002-0840-2878

Tarık Serhat Bozkurt 0000-0001-5642-4986

Early Pub Date June 28, 2022
Publication Date June 28, 2022
Submission Date January 24, 2022
Published in Issue Year 2022 Volume: 13 Issue: 2

Cite

IEEE A. S. Karakaş and T. S. Bozkurt, “Farklı Kalınlıktaki Modifiye Asfalt Yol Kaplamalarının Gerilme-Deformasyon ve Ses Yutma Performans Özelliklerinin İncelenmesi”, DUJE, vol. 13, no. 2, pp. 319–328, 2022, doi: 10.24012/dumf.1062438.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456