Research Article
BibTex RIS Cite

Estimation of Daily Average Global Solar Radiation with Nonlinear Regression Models Developed Using Some Meteorological and Geographical Parameters

Year 2022, Volume: 13 Issue: 3, 589 - 597, 30.09.2022
https://doi.org/10.24012/dumf.1130793

Abstract

In this study, it is aimed to develop empirical models that can be used in estimation of daily average solar radiation (RS) based on some meteorological and geographical parameters. Seven estimation models were developed by nonlinear regression analysis method using various combinations of air temperature (T), relative humidity (RH), extraterrestrial radiation (Ra), saturated (es) and actual vapour pressure (ea) parameters. The models were created using the long-term average daily meteorological data of Kahramanmaraş province (1938 – 2020). The models were tested both these long-term average data and daily meteorological data measured at Kahramanmaraş Sütçü İmam University (KSU) in 2019 and 2020. Long-term average daily actual RS data varied between 4.99 – 32.56 MJ m-2 day-1. The estimated solar radiation values (("RS" ) ̂) with the highest correlation (r = 0.99) with actual RS data were obtained with the RS_7 model, in which the parameters es, ea, T, RH and Ra were used together. The ("RS" ) ̂ values obtained using this model varied between 6.45 to 33.99 MJ m-2 day-1. For the RS_7, which showed the best performance among the seven models, MAPE and RMSE were determined as 4.17% and 0.69 MJ m-2 day-1, respectively. The daily RS values measured in KSU varied between 7.75 – 33.48 MJ m-2 day-1 and 10.51 – 30.23 MJ m-2 day-1 for 2019 and 2020, respectively. The ("RS" ) ̂ values closest to the measured RS values were estimated with the RS_7 model. The estimated ("RS" ) ̂ values by this model varied between 11.74 – 33.93 MJ m-2 day-1 and 13.93 – 31.57 MJ m-2 day-1 for 2019 and 2020, respectively. MAPE values were determined as 11.33% and 7.54%, respectively. It is concluded that this model can be used to estimates daily average solar radiation and will be an excellent alternative since it is compatible with the Kahramanmaraş conditions.

References

  • [1] S. Satheesh, K. Krishnamoorthy, “Radiative effects of natural aerosols: a review”, Atmospheric Environment, vol. 39, no. 11, pp. 2089-2110, April, 2005, DOI. 10.1016/ j.atmosenv.2004.12.029
  • [2] K. Wang, R. E. Dickinson, “A review of global terrestrial evapotranspiration: observation, modeling, climatology and climatic variability”, Reviews of Geophysics, vol. 50, no. 2, pp. 1-54, May, 2012, DOI. 10.1029/2011RG000373
  • [3] M. Wild, D. Folini, C. Schär, N. Loeb, E. G. Dutton, G. König-Langlo, “The global energy balance from a surface perspective”, Climate Dynamics, vol. 40, no. 11-12, pp. 3107-3134, November, 2013, DOI.10.1007/ s00382-012-1569-8
  • [4] L. S. Pereira, R. G Allen, M. Smith, D. Raes, “Crop evapotranspiration estimation with FAO 56: past and future”, Agricultural Water Management, vol. 147, pp. 4-20, August, 2015, DOI. 10.1016/j.agwat.2014. 07.031
  • [5] A. A. El-Sebaii, F. S. Al-Hazmi, A. A. Al-Ghamdi, S. J. Yaghmour, “Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia”, Applied Energy, vol. 87, no. 2, pp. 568-576, February, 2010, DOI. 10.1016/j.apenergy. 2009.06.032
  • [6] K. L. Bristow, G. S. Campbell, “On the relationship between incoming solar radiation and daily maximum and minimum temperature”, Agricultural and forest meteorology, vol. 31, no. 2, pp. 159-166, May, 1984, DOİ. 10.1016/0168-1923(84)90017-0
  • [7] G. L. Hargreaves, G. H. Hargreaves, J. P. Riley, “Irrigation water requirements for Senegal River Basin”, Journal of Irrigation and Drainage Engineering, vol. 111, no. 3, pp. 265-275, 1985.
  • [8] R. G. Allen, “Self-calibrating method for estimating solar radiation from air temperature”, Journal of Hydrologic Engineering, vol. 2, no. 2, pp. 56-67, April, 1997, DOI. 10.1061/(ASCE)1084-0699(1997) 2:2(56)
  • [9] R. Chen, K. Ersi, J. Yang, S. Lu, W. Zhao, “Validation of five global radiation models with measured daily data in China”, Energy Conversion and Management, vol. 45, no. 11-12, pp. 1759-1769, July, 2004, DOI. 10.1016/j.enconman. 2003.09.019
  • [10] H. Ögelman, A. Ecevit, E. Taşdemiroglu, “A new method for estimating solar radiation from bright sunshine data”, Solar Energy, vol. 33, no. 6, pp. 619-625, 1984, DOI. 10.1016/0038-092X(84)90018-5
  • [11] I. T. Toğrul, E. Onat, “A study for estimating solar radiation in Elazığ using geographical and meteorological data”, Energy Conversion and Management, vol. 40, pp. 1577-1584, 1999, DOI. 10.1016/S0196-8904(99)00035-7
  • [12] C. Ertekin, O. Yaldız, “Estimation of monthly average daily global radiation on horizontal surface for Antalya, Turkey”, Renewable Energy, vol. 17, no. 1, pp. 95-102, 1999, DOI: 10.1016/S0960-1481(98)00109-8
  • [13] A. A. Trabea, M. A. Mosalam Shaltout, “Correlation of global solar radiation with meteorological parameters over Egypt”, Renewable Energy, vol. 21, no. 2, pp. 297-308, 2000, DOI: 10.1016/S0960-1481(99)00127-5
  • [14] Y. El-Mghouchi, A. El Bouardi, Z. Choulli, T. Ajzoul, “New model to estimate and evaluate the solar radiation”, International Journal of Sustainable Built Environment, vol. 3, no. 2, pp. 225-234, December, 2014, DOI. 10.1016/j.ijsbe.2014.11. 001
  • [15] G. Shi, X. Qiu, Y. Zeng, “New method for estimating daily global solar radiation over sloped topography in China”, Advances in Atmospheric Sciences, vol. 35, no. 3, pp. 285-295, March, 2018, DOI. 10.1007/s00376-017-6243-y
  • [16] MGM, 2020. Records of Kahramanmaraş Regional Directorate of Meteorology, Kahramanmaraş.
  • [17] R. G. Allen, W. O. Pruitt, J. L. Wright, T. A. Howell, F. Ventura, R. Snyder, D. Itenfisu, P. Steduto, J. Berengena, J. B. Yrisarry, M. Smith, L. S. Pereira, D. Raes, A. Perrier, I. Alves, I. Walter, R. Elliot, “A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman- Monteith method”, Agricultural Water Management, vol. 81, pp. 1-22, 2006
  • [18] S. V. Archontoulis, F. E. Miguez, “Nonlinear regression models and applications in agricultural research”, Agronomy, vol. 107, no. 2, pp. 786-798 March, 2015. DOI. 10.2134/agronj2012.050
  • [19] M. Yurdakul, C. Leylak, S. Buzrul, “Use of excel in food science 2: non-linear regression”, Food and Health, vol. 6, no. 3, pp. 199-212, Jun, 2020, 10.3153/FH20021
  • [20] C. D. Lewis, Industrial and Business Forecasting Methods. London, England: Butterworths Publishing, 1982, pp. 40-142.
  • [21] E. Deniz, K. Atik, “A study for estimation solar radiation in Zonguldak using geographical and meteorological data”, Uludağ University Journal of The Faculty of Engineering, vol. 12, no. 2, pp. 35-42, 2007, DOI. 10.17482/uujfe.21256
  • [22] A. S. Ayegba, F. S. Al-Hazmi, A. A. Al-Ghamdi, S. J. Yaghmour, “Impacts of relative humidity and mean air temperature on global solar radiations of Ikeja, Lagos, Nigeria”. International Journal of Scientific and Research Publications, vol. 7, no. 2, pp. 315-319, February, 2017.
  • [23] H. Tabari, P. Hosseinzadehtalaei, P. Willems, C. Martinez, “Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations”, Hydrological Sciences Journal, vol. 61, no. 3, pp. 610-619, December, 2015, DOI. 10.1080/02626 667.2014.947293
  • [24] H. Alsamamra, “Estimation of global solar radiation from temperature extremes: a case study of Palestine”, Journal of Energy and Natural Resources, vol. 8, no. 1, pp. 1-5, January, 2019, DOI. 10.11648/j.jenr.20 190801.11
  • [25] H. Ye, E. J. Fetzer, “Atmospheric moisture content associated with surface air temperatures over Northern Eurasia”, International Journal of Climatology, vol. 30, no. 10, pp. 1463-1471, January, 2009, DOI. 10.1002/joc.1991
  • [26] H. L. Penman, “Natural evaporation from open water, bare soil and grass”, Proceedings of The Royal Society A, Mathematical, Physical and Engineering Sciences, vol. 193, no. 1032, pp. 120-145, April, 1948, DOI. 10.1098/rspa.1948.0037
  • [27] J. L. Monteith, “Evaporation and the environment”, Symposia of the Society for Experimental Biology, vol. 19, pp. 205-234, 1965.
  • [28] N. Şarlak, A. Güven, “Estimation of global solar radiation: a case study of Gaziantep”, İMO Teknik Dergi, vol. 27, no. 3, pp. 7561-7568, 2016.

Estimation of Daily Average Global Solar Radiation with Nonlinear Regression Models Developed Using Some Meteorological and Geographical Parameters

Year 2022, Volume: 13 Issue: 3, 589 - 597, 30.09.2022
https://doi.org/10.24012/dumf.1130793

Abstract

In this study, it is aimed to develop empirical models that can be used in estimation of daily average solar radiation (RS) based on some meteorological and geographical parameters. Seven estimation models were developed by nonlinear regression analysis method using various combinations of air temperature (T), relative humidity (RH), extraterrestrial radiation (Ra), saturated (es) and actual vapour pressure (ea) parameters. The models were created using the long-term average daily meteorological data of Kahramanmaraş province (1938 – 2020). The models were tested both these long-term average data and daily meteorological data measured at Kahramanmaraş Sütçü İmam University (KSU) in 2019 and 2020. Long-term average daily actual RS data varied between 4.99 – 32.56 MJ m-2 day-1. The estimated solar radiation values (("RS" ) ̂) with the highest correlation (r = 0.99) with actual RS data were obtained with the RS_7 model, in which the parameters es, ea, T, RH and Ra were used together. The ("RS" ) ̂ values obtained using this model varied between 6.45 to 33.99 MJ m-2 day-1. For the RS_7, which showed the best performance among the seven models, mean absolute percentage error (MAPE) and root mean square error (RMSE) were determined as 4.17% and 0.69 MJ m-2 day-1, respectively. The daily RS values measured in KSU varied between 7.75 – 33.48 MJ m-2 day-1 and 10.51 – 30.23 MJ m-2 day-1 for 2019 and 2020. The ("RS" ) ̂ values closest to the measured RS values were estimated with the RS_7 model. The estimated ("RS" ) ̂ values by this model varied between 11.74 – 33.93 MJ m-2 day-1 and 13.93 – 31.57 MJ m-2 day-1 for 2019 and 2020, respectively. MAPE values were determined as 11.33% and 7.54%, respectively. It is concluded that this model can be used to estimates daily average solar radiation and will be an excellent alternative since it is compatible with the Kahramanmaraş conditions.

References

  • [1] S. Satheesh, K. Krishnamoorthy, “Radiative effects of natural aerosols: a review”, Atmospheric Environment, vol. 39, no. 11, pp. 2089-2110, April, 2005, DOI. 10.1016/ j.atmosenv.2004.12.029
  • [2] K. Wang, R. E. Dickinson, “A review of global terrestrial evapotranspiration: observation, modeling, climatology and climatic variability”, Reviews of Geophysics, vol. 50, no. 2, pp. 1-54, May, 2012, DOI. 10.1029/2011RG000373
  • [3] M. Wild, D. Folini, C. Schär, N. Loeb, E. G. Dutton, G. König-Langlo, “The global energy balance from a surface perspective”, Climate Dynamics, vol. 40, no. 11-12, pp. 3107-3134, November, 2013, DOI.10.1007/ s00382-012-1569-8
  • [4] L. S. Pereira, R. G Allen, M. Smith, D. Raes, “Crop evapotranspiration estimation with FAO 56: past and future”, Agricultural Water Management, vol. 147, pp. 4-20, August, 2015, DOI. 10.1016/j.agwat.2014. 07.031
  • [5] A. A. El-Sebaii, F. S. Al-Hazmi, A. A. Al-Ghamdi, S. J. Yaghmour, “Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia”, Applied Energy, vol. 87, no. 2, pp. 568-576, February, 2010, DOI. 10.1016/j.apenergy. 2009.06.032
  • [6] K. L. Bristow, G. S. Campbell, “On the relationship between incoming solar radiation and daily maximum and minimum temperature”, Agricultural and forest meteorology, vol. 31, no. 2, pp. 159-166, May, 1984, DOİ. 10.1016/0168-1923(84)90017-0
  • [7] G. L. Hargreaves, G. H. Hargreaves, J. P. Riley, “Irrigation water requirements for Senegal River Basin”, Journal of Irrigation and Drainage Engineering, vol. 111, no. 3, pp. 265-275, 1985.
  • [8] R. G. Allen, “Self-calibrating method for estimating solar radiation from air temperature”, Journal of Hydrologic Engineering, vol. 2, no. 2, pp. 56-67, April, 1997, DOI. 10.1061/(ASCE)1084-0699(1997) 2:2(56)
  • [9] R. Chen, K. Ersi, J. Yang, S. Lu, W. Zhao, “Validation of five global radiation models with measured daily data in China”, Energy Conversion and Management, vol. 45, no. 11-12, pp. 1759-1769, July, 2004, DOI. 10.1016/j.enconman. 2003.09.019
  • [10] H. Ögelman, A. Ecevit, E. Taşdemiroglu, “A new method for estimating solar radiation from bright sunshine data”, Solar Energy, vol. 33, no. 6, pp. 619-625, 1984, DOI. 10.1016/0038-092X(84)90018-5
  • [11] I. T. Toğrul, E. Onat, “A study for estimating solar radiation in Elazığ using geographical and meteorological data”, Energy Conversion and Management, vol. 40, pp. 1577-1584, 1999, DOI. 10.1016/S0196-8904(99)00035-7
  • [12] C. Ertekin, O. Yaldız, “Estimation of monthly average daily global radiation on horizontal surface for Antalya, Turkey”, Renewable Energy, vol. 17, no. 1, pp. 95-102, 1999, DOI: 10.1016/S0960-1481(98)00109-8
  • [13] A. A. Trabea, M. A. Mosalam Shaltout, “Correlation of global solar radiation with meteorological parameters over Egypt”, Renewable Energy, vol. 21, no. 2, pp. 297-308, 2000, DOI: 10.1016/S0960-1481(99)00127-5
  • [14] Y. El-Mghouchi, A. El Bouardi, Z. Choulli, T. Ajzoul, “New model to estimate and evaluate the solar radiation”, International Journal of Sustainable Built Environment, vol. 3, no. 2, pp. 225-234, December, 2014, DOI. 10.1016/j.ijsbe.2014.11. 001
  • [15] G. Shi, X. Qiu, Y. Zeng, “New method for estimating daily global solar radiation over sloped topography in China”, Advances in Atmospheric Sciences, vol. 35, no. 3, pp. 285-295, March, 2018, DOI. 10.1007/s00376-017-6243-y
  • [16] MGM, 2020. Records of Kahramanmaraş Regional Directorate of Meteorology, Kahramanmaraş.
  • [17] R. G. Allen, W. O. Pruitt, J. L. Wright, T. A. Howell, F. Ventura, R. Snyder, D. Itenfisu, P. Steduto, J. Berengena, J. B. Yrisarry, M. Smith, L. S. Pereira, D. Raes, A. Perrier, I. Alves, I. Walter, R. Elliot, “A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman- Monteith method”, Agricultural Water Management, vol. 81, pp. 1-22, 2006
  • [18] S. V. Archontoulis, F. E. Miguez, “Nonlinear regression models and applications in agricultural research”, Agronomy, vol. 107, no. 2, pp. 786-798 March, 2015. DOI. 10.2134/agronj2012.050
  • [19] M. Yurdakul, C. Leylak, S. Buzrul, “Use of excel in food science 2: non-linear regression”, Food and Health, vol. 6, no. 3, pp. 199-212, Jun, 2020, 10.3153/FH20021
  • [20] C. D. Lewis, Industrial and Business Forecasting Methods. London, England: Butterworths Publishing, 1982, pp. 40-142.
  • [21] E. Deniz, K. Atik, “A study for estimation solar radiation in Zonguldak using geographical and meteorological data”, Uludağ University Journal of The Faculty of Engineering, vol. 12, no. 2, pp. 35-42, 2007, DOI. 10.17482/uujfe.21256
  • [22] A. S. Ayegba, F. S. Al-Hazmi, A. A. Al-Ghamdi, S. J. Yaghmour, “Impacts of relative humidity and mean air temperature on global solar radiations of Ikeja, Lagos, Nigeria”. International Journal of Scientific and Research Publications, vol. 7, no. 2, pp. 315-319, February, 2017.
  • [23] H. Tabari, P. Hosseinzadehtalaei, P. Willems, C. Martinez, “Validation and calibration of solar radiation equations for estimating daily reference evapotranspiration at cool semi-arid and arid locations”, Hydrological Sciences Journal, vol. 61, no. 3, pp. 610-619, December, 2015, DOI. 10.1080/02626 667.2014.947293
  • [24] H. Alsamamra, “Estimation of global solar radiation from temperature extremes: a case study of Palestine”, Journal of Energy and Natural Resources, vol. 8, no. 1, pp. 1-5, January, 2019, DOI. 10.11648/j.jenr.20 190801.11
  • [25] H. Ye, E. J. Fetzer, “Atmospheric moisture content associated with surface air temperatures over Northern Eurasia”, International Journal of Climatology, vol. 30, no. 10, pp. 1463-1471, January, 2009, DOI. 10.1002/joc.1991
  • [26] H. L. Penman, “Natural evaporation from open water, bare soil and grass”, Proceedings of The Royal Society A, Mathematical, Physical and Engineering Sciences, vol. 193, no. 1032, pp. 120-145, April, 1948, DOI. 10.1098/rspa.1948.0037
  • [27] J. L. Monteith, “Evaporation and the environment”, Symposia of the Society for Experimental Biology, vol. 19, pp. 205-234, 1965.
  • [28] N. Şarlak, A. Güven, “Estimation of global solar radiation: a case study of Gaziantep”, İMO Teknik Dergi, vol. 27, no. 3, pp. 7561-7568, 2016.
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Selçuk USTA 0000-0001-8970-7333

Cafer GENÇOĞLAN 0000-0002-4559-4354

Serpil GENÇOĞLAN 0000-0002-7390-8365

Early Pub Date September 30, 2022
Publication Date September 30, 2022
Submission Date June 14, 2022
Published in Issue Year 2022 Volume: 13 Issue: 3

Cite

IEEE S. USTA, C. GENÇOĞLAN, and S. GENÇOĞLAN, “Estimation of Daily Average Global Solar Radiation with Nonlinear Regression Models Developed Using Some Meteorological and Geographical Parameters”, DUJE, vol. 13, no. 3, pp. 589–597, 2022, doi: 10.24012/dumf.1130793.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456