Research Article
BibTex RIS Cite

Yeni Ferromanyetik Gümüş Bazlı Sulfo-spinelin (AgV2S4) Elektronik Davranışı ve Optik Özellikleri

Year 2022, Volume: 13 Issue: 3, 541 - 549, 30.09.2022
https://doi.org/10.24012/dumf.1147619

Abstract

Bu çalışmada, yüzey merkezli kübik yapıya (FCC) sahip yeni bir gümüş bazlı sülfo-spinel vanadyum sisteminin (AgV2S4) ilgi çekici özellikleri incelenmiştir. Sistemin manyetik doğası, elektronik davranışları ve optik özellikleri ayrıntılı bir şekilde ortaya konmuştur. Hesaplamalar, Yoğunluk Fonksiyonel Teorisi (DFT) altında genelleştirilmiş gradyan yaklaşımı (GGA) kullanılarak yapılmıştır. Wyckoff pozisyonları optimizasyon ile elde edildikten sonra, bu spinel malzemenin üç farklı manyetik faz için elde edilen enerji-hacim eğrileri ve hesaplanan kohezyon enerjileri ile ferromanyetik bir yapıya sahip olduğuna karar verilmiştir. Ayrıca, sistemin bağlanma karakteristiğini ve elektronik davranışını ayrıntılı bir şekilde anlayabilmek için, spin polarize elektronik bant yapıları ve durum yoğunlukları hesaplanmıştır. Bu hesaplamalar sonucunda spin aşağı kanalında 0,41 eV’luk küçük bir bant genişliği olduğu gözlemlenmiştir, bu sebeple sistemin yarı metalik bir karakteristiğe sahip olduğu anlaşılmaktadır. Son olarak, bazı optik özellikleri değerlendirmek için frekansa bağlı kompleks dielektrik fonksiyonlar hesaplanmıştır. Daha sonra dielektrik fonksiyonun reel ve sanal kısımları kullanılarak bazı optik özellikler araştırılmıştır.

References

  • [1] I. Efthimiopoulos et al., “Structural transition in the magnetoelectric spinel under pressure,” Phys. Rev. B, vol. 93, no. 17, p. 174103, May 2016, doi: 10.1103/PhysRevB.93.174103.
  • [2] C. J. Fennie and K. M. Rabe, “Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2S4 Phys. Rev. B, vol. 72, no. 21, p. 214123, Dec. 2005, doi: 10.1103/PhysRevB.72.214123.
  • [3] H. Sims, K. Ramasamy, W. H. Butler, and A. Gupta, “Electronic structure of magnetic semiconductor CdCr 2 Te 4 : A possible spin-dependent symmetry filter,” Appl. Phys. Lett., vol. 103, no. 19, p. 192402, Nov. 2013, doi: 10.1063/1.4827818.
  • [4] A. Erkişi, “Ab Initio Study on Electronic and Elastic Properties of AgCr 2 S 4,” Acta Phys. Pol. A, vol. 140, no. 3, pp. 243–251, Sep. 2021, doi: 10.12693/APhysPolA.140.243.
  • [5] A. Erkisi, B. Yildiz, X. Wang, M. Isik, Y. Ozcan, and G. Surucu, “The investigation of electronic nature and mechanical properties under spin effects for new half-metallic ferromagnetic chalcogenides Ag3CrX4 (X = S, Se, and Te),” J. Magn. Magn. Mater., vol. 519, p. 167482, Feb. 2021, doi: 10.1016/j.jmmm.2020.167482.
  • [6] R. F. Ziolo et al., “Matrix-Mediated Synthesis of Nanocrystalline γ-Fe 2 O 3 : A New Optically Transparent Magnetic Material,” Science (80-. )., vol. 257, no. 5067, pp. 219–223, Jul. 1992, doi: 10.1126/science.257.5067.219.
  • [7] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,” Science (80-. )., vol. 287, no. 5460, pp. 1989–1992, Mar. 2000, doi: 10.1126/science.287.5460.1989.
  • [8] D. Yoo, H. Jeong, S.-H. Noh, J.-H. Lee, and J. Cheon, “Magnetically Triggered Dual Functional Nanoparticles for Resistance-Free Apoptotic Hyperthermia,” Angew. Chemie Int. Ed., vol. 52, no. 49, pp. 13047–13051, Dec. 2013, doi: 10.1002/anie.201306557.
  • [9] H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, “Exchange-coupled nanocomposite magnets by nanoparticle self-assembly,” Nature, vol. 420, no. 6914, pp. 395–398, Nov. 2002, doi: 10.1038/nature01208.
  • [10] R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun, “Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles,” Adv. Mater., vol. 22, no. 25, pp. 2729–2742, Jul. 2010, doi: 10.1002/adma.201000260.
  • [11] A. S. Cameron et al., “Magnetic phase diagram of the helimagnetic spinel compound ZnCr 2 Se 4 revisited by small-angle neutron scattering,” J. Phys. Condens. Matter, vol. 28, no. 14, p. 146001, Apr. 2016, doi: 10.1088/0953-8984/28/14/146001.
  • [12] N. Menyuk, K. Dwight, R. J. Arnott, and A. Wold, “Ferromagnetism in CdCr 2 Se 4 and CdCr 2 S 4,” J. Appl. Phys., vol. 37, no. 3, pp. 1387–1388, Mar. 1966, doi: 10.1063/1.1708484.
  • [13] M. Tachibana, N. Taira, and H. Kawaji, “Heat capacity and thermal expansion of CdCr2Se4 and CdCr2S4,” Solid State Commun., vol. 151, no. 23, pp. 1776–1779, Dec. 2011, doi: 10.1016/j.ssc.2011.08.029.
  • [14] S. Kitani, M. Tachibana, and H. Kawaji, “Spin-glass-like behavior in ferromagnetic phase of CdCr2S4,” Solid State Commun., vol. 179, pp. 16–19, Feb. 2014, doi: 10.1016/j.ssc.2013.06.004.
  • [15] K. Ramasamy, D. Mazumdar, R. D. Bennett, and A. Gupta, “Syntheses and magnetic properties of Cr2Te3 and CuCr2Te4 nanocrystals,” Chem. Commun., vol. 48, no. 45, p. 5656, 2012, doi: 10.1039/c2cc32021e.
  • [16] T. Kanomata, H. Ido, and T. Kaneko, “Effect of Pressure on Curie Temperature of Calcogenide Spinels CuCr 2 X 4 (X=S, Se and Te),” J. Phys. Soc. Japan, vol. 29, no. 2, pp. 332–335, Aug. 1970, doi: 10.1143/JPSJ.29.332.
  • [17] T. Suzuyama et al., “Ferromagnetic-phase transition in the spinel-type CuCr2Te4,” J. Solid State Chem., vol. 179, no. 1, pp. 140–144, Jan. 2006, doi: 10.1016/j.jssc.2005.10.007.
  • [18] R. Li, C. Zhang, and Y. Zhang, “Critical properties of the 3D-Heisenberg ferromagnet CuCr2Te4,” Solid State Commun., vol. 152, no. 3, pp. 173–176, Feb. 2012, doi: 10.1016/j.ssc.2011.11.014.
  • [19] H. W. Lehmann and M. Robbins, “Electrical Transport Properties of the Insulating Ferromagnetic Spinels CdCr 2 S 4 and CdCr 2 Se 4,” J. Appl. Phys., vol. 37, no. 3, pp. 1389–1390, Mar. 1966, doi: 10.1063/1.1708485.
  • [20] P. K. Baltzer, H. W. Lehmann, and M. Robbins, “Insulating Ferromagnetic Spinels,” Phys. Rev. Lett., vol. 15, no. 11, pp. 493–495, Sep. 1965, doi: 10.1103/PhysRevLett.15.493.
  • [21] K. G. Nikiforov, “Magnetically ordered multinary semiconductors,” Prog. Cryst. Growth Charact. Mater., vol. 39, no. 1–4, pp. 1–104, Jan. 1999, doi: 10.1016/S0960-8974(99)00016-9.
  • [22] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl, “Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4,” Nature, vol. 434, no. 7031, pp. 364–367, Mar. 2005, doi: 10.1038/nature03348.
  • [23] S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, “Colossal Magnetocapacitance and Colossal Magnetoresistance in HgCr2S4, Phys. Rev. Lett., vol. 96, no. 15, p. 157202, Apr. 2006, doi: 10.1103/PhysRevLett.96.157202.
  • [24] V. Tsurkan, D. Ehlers, V. Felea, H.-A. Krug von Nidda, and A. Loidl, “Critical magnetic behavior of ferromagnetic CdCr2S4,” Phys. Rev. B, vol. 88, no. 14, p. 144417, Oct. 2013, doi: 10.1103/PhysRevB.88.144417.
  • [25] L. Q. Yan et al., “Large magnetocaloric effect in spinel CdCr2S4,” Appl. Phys. Lett., vol. 90, no. 26, p. 262502, Jun. 2007, doi: 10.1063/1.2751576.
  • [26] C. P. Sun et al., “Colossal electroresistance and colossal magnetoresistance in spinel multiferroic CdCr2S4,” Appl. Phys. Lett., vol. 96, no. 12, p. 122109, Mar. 2010, doi: 10.1063/1.3368123.
  • [27] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, vol. 47, no. 1, pp. 558–561, Jan. 1993, doi: 10.1103/PhysRevB.47.558.
  • [28] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., vol. 6, no. 1, pp. 15–50, Jul. 1996, doi: 10.1016/0927-0256(96)00008-0.
  • [29] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, no. 3B, pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864.
  • [30] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)],” Phys. Rev. Lett., vol. 78, no. 7, pp. 1396–1396, Feb. 1997, doi: 10.1103/PhysRevLett.78.1396.
  • [31] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, no. 24, pp. 17953–17979, Dec. 1994, doi: 10.1103/PhysRevB.50.17953.
  • [32] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, no. 12, pp. 5188–5192, Jun. 1976, doi: 10.1103/PhysRevB.13.5188.
  • [33] Parrill and Lipkowitz, Reviews in Computational Chemistry. Wiley, 2016.
  • [34] S. A. Khandy, I. Islam, D. C. Gupta, R. Khenata, and A. Laref, “Lattice dynamics, mechanical stability and electronic structure of Fe-based Heusler semiconductors,” Sci. Rep., vol. 9, no. 1, p. 1475, Dec. 2019, doi: 10.1038/s41598-018-37740-y.
  • [35] P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, “Universal features of the equation of state of solids,” J. Phys. Condens. Matter, vol. 1, no. 11, pp. 1941–1963, Mar. 1989, doi: 10.1088/0953-8984/1/11/002.
  • [36] K. Sato, P. H. Dederichs, H. Katayama-Yoshida, and J. Kudrnovský, “Exchange interactions in diluted magnetic semiconductors,” J. Phys. Condens. Matter, vol. 16, no. 48, pp. S5491–S5497, Dec. 2004, doi: 10.1088/0953-8984/16/48/003.
  • [37] M. Rostami, M. Afshari, and M. Moradi, “Bulk and surface half-metallicity of CsS in CsCl structure: A density functional theory study,” J. Alloys Compd., vol. 575, pp. 301–308, Oct. 2013, doi: 10.1016/j.jallcom.2013.05.171.
  • [38] A. Erkisi and G. Surucu, “The investigation of electronic, magnetic, mechanical, and lattice dynamical properties of Pd MX ( M = Cr, Fe and X = Si and Ge) ferromagnetic half-Heusler metallics: an ab initio study,” Mater. Res. Express, vol. 4, no. 6, p. 066504, Jun. 2017, doi: 10.1088/2053-1591/aa730e.
  • [39] A. Erkisi and G. Surucu, “The electronic and elasticity properties of new half-metallic chalcogenides Cu 3 TMCh 4 (TM = Cr, Fe and Ch = S, Se, Te): an ab initio study,” Philos. Mag., vol. 99, no. 4, pp. 513–529, Feb. 2019, doi: 10.1080/14786435.2018.1546960.
  • [40] A. Erkisi and G. Surucu, “The electronic and elasticity properties of new half-metallic chalcogenides,” Philos. Mag., vol. 99, no. 4, pp. 513–529, Feb. 2019, doi: 10.1080/14786435.2018.1546960.
  • [41] N. V. Smith, “Photoelectron Energy Spectra and the Band Structures of the Noble Metals,” Phys. Rev. B, vol. 3, no. 6, pp. 1862–1878, Mar. 1971, doi: 10.1103/PhysRevB.3.1862.
  • [42] C. Ambrosch-Draxl and J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method,” Comput. Phys. Commun., vol. 175, no. 1, pp. 1–14, Jul. 2006, doi: 10.1016/j.cpc.2006.03.005.
  • [43] G. Surucu, K. Colakoglu, E. Deligoz, N. Korozlu, and Y. O. Ciftci, “The electronic and optical properties of mixed alloys,” Solid State Commun., vol. 150, no. 29–30, pp. 1413–1418, Aug. 2010, doi: 10.1016/j.ssc.2010.04.026.
  • [44] F. M, Optical Properties of Solids, Oxford University Press, New York, NY. 2001.
  • [45] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B, vol. 73, no. 4, p. 045112, Jan. 2006, doi: 10.1103/PhysRevB.73.045112.
  • [46] M. Bokdam et al., “Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites,” Sci. Rep., vol. 6, no. 1, p. 28618, Sep. 2016, doi: 10.1038/srep28618.
  • [47] A. Erkisi et al., “First-principles investigation of LaGaO 3 and LaInO 3 lanthanum perovskite oxides” Philos. Mag., vol. 96, no. 19, pp. 2040–2058, Jul. 2016, doi: 10.1080/14786435.2016.1189100.
  • [48] A. Fahrenbruch and R. Bube, Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion, Academic Press, New York. 2012.
  • [49] S. Azam and A. H. Reshak, “Electronic Structure of 1,3-dicarbomethoxy4,6-benzenedicarboxylic acid: Density functional approach,” Int. J. Electrochem. Sci., vol. 8, no. 8, pp. 10359–10375, 2013.

Electronic Behavior and Optical Properties of New Ferromagnetic Silver-Based Sulfo-spinel: AgV2S4

Year 2022, Volume: 13 Issue: 3, 541 - 549, 30.09.2022
https://doi.org/10.24012/dumf.1147619

Abstract

This study reports the intriguing properties of a novel ternary silver-based sulfo-spinel vanadium system (AgV2S4) having a face centered cubic structure (FCC). The magnetic nature, electronic behavior and optical properties of this system are revealed. The calculations were performed with spin-effect and by using generalized gradient approximation (GGA) under Density Functional Theory (DFT). After obtaining the optimized Wyckoff positions for the atoms in the crystal structure of this composition, it was decided that this spinel material has ferromagnetic nature in view of the energy-volume curves obtained for three different magnetic phases and of the calculated cohesive energies. Furthermore, the spin-polarized electronic band structure with the orbital projected density of electronic states was calculated within first principles to investigate its electronic behavior and bonding characteristic in detail. The observed small band gap in minority spin channel is Eg = 0.41 eV, so its electronic band structure imply that this system has half-metallic character. Finally, to evaluate some optical features, frequency dependent complex dielectric functions were calculated. Then, some optical properties were investigated by using the real and imaginary parts of the dielectric function.

References

  • [1] I. Efthimiopoulos et al., “Structural transition in the magnetoelectric spinel under pressure,” Phys. Rev. B, vol. 93, no. 17, p. 174103, May 2016, doi: 10.1103/PhysRevB.93.174103.
  • [2] C. J. Fennie and K. M. Rabe, “Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2S4 Phys. Rev. B, vol. 72, no. 21, p. 214123, Dec. 2005, doi: 10.1103/PhysRevB.72.214123.
  • [3] H. Sims, K. Ramasamy, W. H. Butler, and A. Gupta, “Electronic structure of magnetic semiconductor CdCr 2 Te 4 : A possible spin-dependent symmetry filter,” Appl. Phys. Lett., vol. 103, no. 19, p. 192402, Nov. 2013, doi: 10.1063/1.4827818.
  • [4] A. Erkişi, “Ab Initio Study on Electronic and Elastic Properties of AgCr 2 S 4,” Acta Phys. Pol. A, vol. 140, no. 3, pp. 243–251, Sep. 2021, doi: 10.12693/APhysPolA.140.243.
  • [5] A. Erkisi, B. Yildiz, X. Wang, M. Isik, Y. Ozcan, and G. Surucu, “The investigation of electronic nature and mechanical properties under spin effects for new half-metallic ferromagnetic chalcogenides Ag3CrX4 (X = S, Se, and Te),” J. Magn. Magn. Mater., vol. 519, p. 167482, Feb. 2021, doi: 10.1016/j.jmmm.2020.167482.
  • [6] R. F. Ziolo et al., “Matrix-Mediated Synthesis of Nanocrystalline γ-Fe 2 O 3 : A New Optically Transparent Magnetic Material,” Science (80-. )., vol. 257, no. 5067, pp. 219–223, Jul. 1992, doi: 10.1126/science.257.5067.219.
  • [7] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,” Science (80-. )., vol. 287, no. 5460, pp. 1989–1992, Mar. 2000, doi: 10.1126/science.287.5460.1989.
  • [8] D. Yoo, H. Jeong, S.-H. Noh, J.-H. Lee, and J. Cheon, “Magnetically Triggered Dual Functional Nanoparticles for Resistance-Free Apoptotic Hyperthermia,” Angew. Chemie Int. Ed., vol. 52, no. 49, pp. 13047–13051, Dec. 2013, doi: 10.1002/anie.201306557.
  • [9] H. Zeng, J. Li, J. P. Liu, Z. L. Wang, and S. Sun, “Exchange-coupled nanocomposite magnets by nanoparticle self-assembly,” Nature, vol. 420, no. 6914, pp. 395–398, Nov. 2002, doi: 10.1038/nature01208.
  • [10] R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, and S. Sun, “Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles,” Adv. Mater., vol. 22, no. 25, pp. 2729–2742, Jul. 2010, doi: 10.1002/adma.201000260.
  • [11] A. S. Cameron et al., “Magnetic phase diagram of the helimagnetic spinel compound ZnCr 2 Se 4 revisited by small-angle neutron scattering,” J. Phys. Condens. Matter, vol. 28, no. 14, p. 146001, Apr. 2016, doi: 10.1088/0953-8984/28/14/146001.
  • [12] N. Menyuk, K. Dwight, R. J. Arnott, and A. Wold, “Ferromagnetism in CdCr 2 Se 4 and CdCr 2 S 4,” J. Appl. Phys., vol. 37, no. 3, pp. 1387–1388, Mar. 1966, doi: 10.1063/1.1708484.
  • [13] M. Tachibana, N. Taira, and H. Kawaji, “Heat capacity and thermal expansion of CdCr2Se4 and CdCr2S4,” Solid State Commun., vol. 151, no. 23, pp. 1776–1779, Dec. 2011, doi: 10.1016/j.ssc.2011.08.029.
  • [14] S. Kitani, M. Tachibana, and H. Kawaji, “Spin-glass-like behavior in ferromagnetic phase of CdCr2S4,” Solid State Commun., vol. 179, pp. 16–19, Feb. 2014, doi: 10.1016/j.ssc.2013.06.004.
  • [15] K. Ramasamy, D. Mazumdar, R. D. Bennett, and A. Gupta, “Syntheses and magnetic properties of Cr2Te3 and CuCr2Te4 nanocrystals,” Chem. Commun., vol. 48, no. 45, p. 5656, 2012, doi: 10.1039/c2cc32021e.
  • [16] T. Kanomata, H. Ido, and T. Kaneko, “Effect of Pressure on Curie Temperature of Calcogenide Spinels CuCr 2 X 4 (X=S, Se and Te),” J. Phys. Soc. Japan, vol. 29, no. 2, pp. 332–335, Aug. 1970, doi: 10.1143/JPSJ.29.332.
  • [17] T. Suzuyama et al., “Ferromagnetic-phase transition in the spinel-type CuCr2Te4,” J. Solid State Chem., vol. 179, no. 1, pp. 140–144, Jan. 2006, doi: 10.1016/j.jssc.2005.10.007.
  • [18] R. Li, C. Zhang, and Y. Zhang, “Critical properties of the 3D-Heisenberg ferromagnet CuCr2Te4,” Solid State Commun., vol. 152, no. 3, pp. 173–176, Feb. 2012, doi: 10.1016/j.ssc.2011.11.014.
  • [19] H. W. Lehmann and M. Robbins, “Electrical Transport Properties of the Insulating Ferromagnetic Spinels CdCr 2 S 4 and CdCr 2 Se 4,” J. Appl. Phys., vol. 37, no. 3, pp. 1389–1390, Mar. 1966, doi: 10.1063/1.1708485.
  • [20] P. K. Baltzer, H. W. Lehmann, and M. Robbins, “Insulating Ferromagnetic Spinels,” Phys. Rev. Lett., vol. 15, no. 11, pp. 493–495, Sep. 1965, doi: 10.1103/PhysRevLett.15.493.
  • [21] K. G. Nikiforov, “Magnetically ordered multinary semiconductors,” Prog. Cryst. Growth Charact. Mater., vol. 39, no. 1–4, pp. 1–104, Jan. 1999, doi: 10.1016/S0960-8974(99)00016-9.
  • [22] J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl, “Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4,” Nature, vol. 434, no. 7031, pp. 364–367, Mar. 2005, doi: 10.1038/nature03348.
  • [23] S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, “Colossal Magnetocapacitance and Colossal Magnetoresistance in HgCr2S4, Phys. Rev. Lett., vol. 96, no. 15, p. 157202, Apr. 2006, doi: 10.1103/PhysRevLett.96.157202.
  • [24] V. Tsurkan, D. Ehlers, V. Felea, H.-A. Krug von Nidda, and A. Loidl, “Critical magnetic behavior of ferromagnetic CdCr2S4,” Phys. Rev. B, vol. 88, no. 14, p. 144417, Oct. 2013, doi: 10.1103/PhysRevB.88.144417.
  • [25] L. Q. Yan et al., “Large magnetocaloric effect in spinel CdCr2S4,” Appl. Phys. Lett., vol. 90, no. 26, p. 262502, Jun. 2007, doi: 10.1063/1.2751576.
  • [26] C. P. Sun et al., “Colossal electroresistance and colossal magnetoresistance in spinel multiferroic CdCr2S4,” Appl. Phys. Lett., vol. 96, no. 12, p. 122109, Mar. 2010, doi: 10.1063/1.3368123.
  • [27] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, vol. 47, no. 1, pp. 558–561, Jan. 1993, doi: 10.1103/PhysRevB.47.558.
  • [28] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci., vol. 6, no. 1, pp. 15–50, Jul. 1996, doi: 10.1016/0927-0256(96)00008-0.
  • [29] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136, no. 3B, pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864.
  • [30] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)],” Phys. Rev. Lett., vol. 78, no. 7, pp. 1396–1396, Feb. 1997, doi: 10.1103/PhysRevLett.78.1396.
  • [31] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, no. 24, pp. 17953–17979, Dec. 1994, doi: 10.1103/PhysRevB.50.17953.
  • [32] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, no. 12, pp. 5188–5192, Jun. 1976, doi: 10.1103/PhysRevB.13.5188.
  • [33] Parrill and Lipkowitz, Reviews in Computational Chemistry. Wiley, 2016.
  • [34] S. A. Khandy, I. Islam, D. C. Gupta, R. Khenata, and A. Laref, “Lattice dynamics, mechanical stability and electronic structure of Fe-based Heusler semiconductors,” Sci. Rep., vol. 9, no. 1, p. 1475, Dec. 2019, doi: 10.1038/s41598-018-37740-y.
  • [35] P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, “Universal features of the equation of state of solids,” J. Phys. Condens. Matter, vol. 1, no. 11, pp. 1941–1963, Mar. 1989, doi: 10.1088/0953-8984/1/11/002.
  • [36] K. Sato, P. H. Dederichs, H. Katayama-Yoshida, and J. Kudrnovský, “Exchange interactions in diluted magnetic semiconductors,” J. Phys. Condens. Matter, vol. 16, no. 48, pp. S5491–S5497, Dec. 2004, doi: 10.1088/0953-8984/16/48/003.
  • [37] M. Rostami, M. Afshari, and M. Moradi, “Bulk and surface half-metallicity of CsS in CsCl structure: A density functional theory study,” J. Alloys Compd., vol. 575, pp. 301–308, Oct. 2013, doi: 10.1016/j.jallcom.2013.05.171.
  • [38] A. Erkisi and G. Surucu, “The investigation of electronic, magnetic, mechanical, and lattice dynamical properties of Pd MX ( M = Cr, Fe and X = Si and Ge) ferromagnetic half-Heusler metallics: an ab initio study,” Mater. Res. Express, vol. 4, no. 6, p. 066504, Jun. 2017, doi: 10.1088/2053-1591/aa730e.
  • [39] A. Erkisi and G. Surucu, “The electronic and elasticity properties of new half-metallic chalcogenides Cu 3 TMCh 4 (TM = Cr, Fe and Ch = S, Se, Te): an ab initio study,” Philos. Mag., vol. 99, no. 4, pp. 513–529, Feb. 2019, doi: 10.1080/14786435.2018.1546960.
  • [40] A. Erkisi and G. Surucu, “The electronic and elasticity properties of new half-metallic chalcogenides,” Philos. Mag., vol. 99, no. 4, pp. 513–529, Feb. 2019, doi: 10.1080/14786435.2018.1546960.
  • [41] N. V. Smith, “Photoelectron Energy Spectra and the Band Structures of the Noble Metals,” Phys. Rev. B, vol. 3, no. 6, pp. 1862–1878, Mar. 1971, doi: 10.1103/PhysRevB.3.1862.
  • [42] C. Ambrosch-Draxl and J. O. Sofo, “Linear optical properties of solids within the full-potential linearized augmented planewave method,” Comput. Phys. Commun., vol. 175, no. 1, pp. 1–14, Jul. 2006, doi: 10.1016/j.cpc.2006.03.005.
  • [43] G. Surucu, K. Colakoglu, E. Deligoz, N. Korozlu, and Y. O. Ciftci, “The electronic and optical properties of mixed alloys,” Solid State Commun., vol. 150, no. 29–30, pp. 1413–1418, Aug. 2010, doi: 10.1016/j.ssc.2010.04.026.
  • [44] F. M, Optical Properties of Solids, Oxford University Press, New York, NY. 2001.
  • [45] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B, vol. 73, no. 4, p. 045112, Jan. 2006, doi: 10.1103/PhysRevB.73.045112.
  • [46] M. Bokdam et al., “Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites,” Sci. Rep., vol. 6, no. 1, p. 28618, Sep. 2016, doi: 10.1038/srep28618.
  • [47] A. Erkisi et al., “First-principles investigation of LaGaO 3 and LaInO 3 lanthanum perovskite oxides” Philos. Mag., vol. 96, no. 19, pp. 2040–2058, Jul. 2016, doi: 10.1080/14786435.2016.1189100.
  • [48] A. Fahrenbruch and R. Bube, Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion, Academic Press, New York. 2012.
  • [49] S. Azam and A. H. Reshak, “Electronic Structure of 1,3-dicarbomethoxy4,6-benzenedicarboxylic acid: Density functional approach,” Int. J. Electrochem. Sci., vol. 8, no. 8, pp. 10359–10375, 2013.
There are 49 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Buğra YILDIZ 0000-0002-0080-7096

Aytaç ERKİŞİ 0000-0001-7995-7590

Early Pub Date September 30, 2022
Publication Date September 30, 2022
Submission Date July 23, 2022
Published in Issue Year 2022 Volume: 13 Issue: 3

Cite

IEEE B. YILDIZ and A. ERKİŞİ, “Electronic Behavior and Optical Properties of New Ferromagnetic Silver-Based Sulfo-spinel: AgV2S4”, DUJE, vol. 13, no. 3, pp. 541–549, 2022, doi: 10.24012/dumf.1147619.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456