Research Article
BibTex RIS Cite

Karbon nanotüp içeren kompozit kardan milinin burulma burkulmasına ilişkin sayısal ve teorik bir araştırma

Year 2023, Volume: 14 Issue: 4, 671 - 681, 31.12.2023
https://doi.org/10.24012/dumf.1336638

Abstract

Kompozit kardan milleri, üstün mukavemet-ağırlık ve sertlik-ağırlık oranları nedeniyle geleneksel kardan millerinin güçlü bir ikamesi olarak ortaya çıkmışlardır. Aynı zamanda, çok duvarlı karbon nanotüplerin (ÇDKNT) üstün mekanik, elektriksel ve termal özelliklerinden dolayı takviye elemanı olarak kullanımı büyük bir ivme kazanmıştır. Bu çalışmada, karışım kuralı (rule of mixture) ile Halpin-Tsai (H-T) modelini birleştiren bir mikromekanik model, ÇDKNT katkılı karbon fiber takviyeli epoksi reçinenin elastik sabitlerini hesaplamak için kullanılmıştır. Bu mikromekanik model, MWCNT'lerin topaklanma, en boy oranı, dalgalanma ve rastgele yöneliminin etkisini dikkate almaktadır. ÇDKNT/epoksi reçinenin mikromekanik model kullanılarak hesaplanan elastik sabitleri literatürde bulunan deneysel sonuçlarla karşılaştırılmıştır. Ayrıca, çeşitli ÇDKNT konsantrasyonları ve fiber oryantasyon açıları için kompozit kardan millerinin kritik burulma burkulma yükünü tahmin etmek için sonlu elemanlar analizi (SEA) yapılmıştır. SEA sonuçları teorik olarak elde edilen sonuçlarla karşılaştırılmıştır. Sonuçlar, mikromekanik model kullanılarak hesaplanan ÇDKNT/epoksi reçine nanokompozitinin Young modülünün deneysel bulgularla uyumlu olduğunu göstermiştir. ÇDKNT katkısız karbon elyaf takviyeli epoksi reçine ile karşılaştırıldığında, hacimce %10 MWCNT'lerin eklenmesi durumunda E1, E2, G12 ve G23 (kompozit laminanın elastik sabitleri) sırasıyla %0,66, %27,80, %49,02 ve %37,50'lik iyileştirmeler gösterdi. Fiber oryantasyon açısı, Tcr üzerinde ÇDKNT konsantrasyonundan daha baskın bir etkiye sahiptir.

References

  • [1] H. Taş and I. F. Soykok, “Effects of carbon nanotube inclusion into the carbon fiber reinforced laminated composites on flexural stiffness: A numerical and theoretical study,” Compos. Part B Eng., vol. 159, pp. 44–52, Feb. 2019, doi: 10.1016/j.compositesb.2018.09.055.
  • [2] E. M. Soliman, M. P. Sheyka, and M. R. Taha, “Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes,” Int. J. Impact Eng., vol. 47, pp. 39–47, Sep. 2012, doi: 10.1016/j.ijimpeng.2012.03.002.
  • [3] J. Galos, “Thin-ply composite laminates: a review,” Compos. Struct., vol. 236, p. 111920, Mar. 2020, doi: 10.1016/j.compstruct.2020.111920.
  • [4] S. K. Georgantzinos, P. A. Antoniou, G. I. Giannopoulos, A. Fatsis, and S. I. Markolefas, “Design of Laminated Composite Plates with Carbon Nanotube Inclusions against Buckling: Waviness and Agglomeration Effects,” Nanomaterials, vol. 11, no. 9, Art. no. 9, Sep. 2021, doi: 10.3390/nano11092261.
  • [5] “Automotive Composites Market Size, Share & Global Forecast Analysis: 2019-2024,” Stratview Research, SRTI130, Oct. 2019. Accessed: Jul. 18, 2023. [Online]. Available: https://www.stratviewresearch.com/581/automotive-composites-market.html
  • [6] R. Kannan, I. D. Lawrence, G. Kaviprakash, and A. Regan, “Design and Analysis of Composite Drive Shaft for Automotive Application,” Int. J. Eng. Res. Technol., vol. 3, pp. 429–436, Aug. 2014.
  • [7] B. Altin, A. A. Bekem, and A. Ünal, “Determination of Design Criteria for Composite Drive Shaft in Automobiles,” Politek. Derg., pp. 1–1, Dec. 2023, doi: 10.2339/politeknik.1028437.
  • [8] S. K. S. Nadeem, G. Giridhara, and H. K. Rangavittal, “A Review on the design and analysis of composite drive shaft,” Mater. Today Proc., vol. 5, no. 1, Part 3, pp. 2738–2741, Jan. 2018, doi: 10.1016/j.matpr.2018.01.058.
  • [9] A. Bolshikh, “Computational and experimental study of the strength of a composite drive shaft,” Transp. Probl., vol. 16, no. 1, p. 75, 2021.
  • [10] V. Chougule, A. Gupta, and S. Chavan, “Design and Manufacturing of Carbon Fiber Composite Drive Shaft as an Alternative to Conventional Steel Drive Shaft,” Int. J. Innov. Sci. Res. Technol., vol. 3, no. 10, pp. 674–683, 2018.
  • [11] A. Ravi, “Design, Comparison and Analysis of a Composite Drive Shaft for an Automobile,” Int. Rev. Appl. Eng. Res., vol. 4, no. 1, pp. 21–28, 2014.
  • [12] V. S. Bhajantri, S. C. Bajantri, A. M. Shindolkar, and S. S. Amarapure, “DESIGN AND ANALYSIS OF COMPOSITE DRIVE SHAFT,” Int. J. Res. Eng. Technol., vol. 3, no. 3, pp. 738–745, 2014.
  • [13] B. Gireesh, S. Shrishail B, and V. N. Satwik, “Finite Element & Experimental Investigation of Composite Torsion Shaft,” Int. J. Eng. Res. Appl., vol. 3, no. 2, pp. 1510–1517, 2013.
  • [14] T. Rangaswamy and S. Vijayarangan, “Optimal Sizing and Stacking Sequence of Composite Drive Shafts,” vol. 11, Jan. 2005.
  • [15] G. ALAR ÖNER, “Torsional Buckling to Thin Walled Composite Tubes,” Ph.D. Thesis, Atatürk University, 2009.
  • [16] N. Rastogi, “Design of Composite Driveshafts for Automotive Applications,” SAE International, Warrendale, PA, SAE Technical Paper 2004-01–0485, Mar. 2004. doi: 10.4271/2004-01-0485.
  • [17] M. M. Shokrieh, A. Hasani, and L. B. Lessard, “Shear buckling of a composite drive shaft under torsion,” Compos. Struct., vol. 64, no. 1, pp. 63–69, Apr. 2004, doi: 10.1016/S0263-8223(03)00214-9.
  • [18] S. Saha and S. Bal, “Influence of nanotube content on the mechanical and thermo-mechanical behaviour of –COOH functionalized MWNTs/epoxy composites,” Bull. Mater. Sci., vol. 40, no. 5, pp. 945–956, Sep. 2017, doi: 10.1007/s12034-017-1433-x.
  • [19] L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load transfer in carbon nanotube epoxy composites,” Appl. Phys. Lett., vol. 73, no. 26, pp. 3842–3844, Dec. 1998, doi: 10.1063/1.122911.
  • [20] A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Compos. Sci. Technol., vol. 62, no. 15, pp. 1993–1998, Nov. 2002, doi: 10.1016/S0266-3538(02)00129-X.
  • [21] N.-H. Tai, M.-K. Yeh, and J.-H. Liu, “Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement,” Carbon, vol. 42, no. 12–13, pp. 2774–2777, 2004, doi: 10.1016/j.carbon.2004.06.002.
  • [22] V. Jain, S. Jaiswal, K. Dasgupta, and D. Lahiri, “Influence of carbon nanotube on interfacial and mechanical behavior of carbon fiber reinforced epoxy laminated composites,” Polym. Compos., vol. 43, no. 9, pp. 6344–6354, 2022, doi: 10.1002/pc.26943.
  • [23] M. Hassanzadeh-Aghdam, R. Ansari, and A. Darvizeh, “A new micromechanics approach for predicting the elastic response of polymer nanocomposites reinforced with randomly oriented and distributed wavy carbon nanotubes,” J. Compos. Mater., vol. 51, no. 20, pp. 2899–2912, Aug. 2017, doi: 10.1177/0021998317712571.
  • [24] F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, “Fiber waviness in nanotube-reinforced polymer composites—I: Modulus predictions using effective nanotube properties,” Compos. Sci. Technol., vol. 63, no. 11, pp. 1689–1703, Aug. 2003, doi: 10.1016/S0266-3538(03)00069-1.
  • [25] V. Anumandla and R. F. Gibson, “A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites,” Compos. Part Appl. Sci. Manuf., vol. 37, no. 12, pp. 2178–2185, Dec. 2006, doi: 10.1016/j.compositesa.2005.09.016.
  • [26] E. T. Thostenson and T.-W. Chou, “On the elastic properties of carbon nanotube-based composites: modelling and characterization,” J. Phys. Appl. Phys., vol. 36, no. 5, p. 573, Feb. 2003, doi: 10.1088/0022-3727/36/5/323.
  • [27] G. D. Seidel and D. C. Lagoudas, “Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites,” Mech. Mater., vol. 38, no. 8, pp. 884–907, Aug. 2006, doi: 10.1016/j.mechmat.2005.06.029.
  • [28] J. Pan, L. Bian, H. Zhao, and Y. Zhao, “A new micromechanics model and effective elastic modulus of nanotube reinforced composites,” Comput. Mater.Sci., vol. 113, pp. 21–26, Feb. 2016, doi: 10.1016/j.commatsci.2015.11.009.
  • [29] M. Omidi, H. Rokni D.T., A. S. Milani, R. J. Seethaler, and R. Arasteh, “Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures,” Carbon, vol. 48, no. 11, pp. 3218–3228, Sep. 2010, doi: 10.1016/j.carbon.2010.05.007.
  • [30] S. K. Georgantzinos, P. Antoniou, S. Markolefas, and G. Giannopoulos, “Finite element predictions on vibrations of laminated composite plates incorporating the random orientation, agglomeration, and waviness of carbon nanotubes,” Acta Mech., vol. 233, no. 5, pp. 2031–2059, May 2022, doi: 10.1007/s00707-022-03179-6.
  • [31] M. K. Hassanzadeh-Aghdam and J. Jamali, “A new form of a Halpin–Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites,” Bull. Mater. Sci., vol. 42, no. 3, p. 117, Apr. 2019, doi: 10.1007/s12034-019-1784-6.
  • [32] M.-K. Yeh, T.-H. Hsieh, and N.-H. Tai, “Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites,” Mater. Sci. Eng. A, vol. 483–484, pp. 289–292, Jun. 2008, doi: 10.1016/j.msea.2006.09.138.
  • [33] S. Kanagaraj, F. R. Varanda, T. V. Zhil’tsova, M. S. A. Oliveira, and J. A. O. Simões, “Mechanical properties of high density polyethylene/carbon nanotube composites,” Compos. Sci. Technol., vol. 67, no. 15, pp. 3071–3077, Dec. 2007, doi: 10.1016/j.compscitech.2007.04.024.
  • [34] K. Duan et al., “A critical role of CNT real volume fraction on nanocomposite modulus,” Carbon, vol. 189, pp. 395–403, Apr. 2022, doi: 10.1016/j.carbon.2021.12.083.
  • [35] J. F. Wang, J. P. Yang, L. -h. Tam, and W. Zhang, “Effect of CNT volume fractions on nonlinear vibrations of PMMA/CNT composite plates: A multiscale simulation,” Thin-Walled Struct., vol. 170, p. 108513, Jan. 2022, doi: 10.1016/j.tws.2021.108513.
  • [36] M. Tarfaoui, K. Lafdi, and A. El Moumen, “Mechanical properties of carbon nanotubes based polymer composites,” Compos. Part B Eng., vol. 103, pp. 113–121, Oct. 2016, doi: 10.1016/j.compositesb.2016.08.016.
  • [37] A. K. Kaw, Mechanics of Composite Materials, Second Edition. U.S.: CRC Press, 2006.
  • [38] J. C. H. Affdl and J. L. Kardos, “The Halpin-Tsai equations: A review,” Polym. Eng. Sci., vol. 16, no. 5, pp. 344–352, 1976, doi: 10.1002/pen.760160512.
  • [39] D. L. Logan, A first course in the finite element method, Fifth Edition. USA: Cengage Learning, 2011.
  • [40] EnginSoft, “Ansys Composite PrepPost: A user-friendly approach to analyze composite material structures.” Accessed: Jul. 21, 2023. [Online]. Available: https://www.enginsoft.com/solutions/ansys-composite-preppost.html
  • [41] P. D. Soden, M. J. Hinton, and A. S. Kaddour, “Chapter 2.1 - Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates,” in Failure Criteria in Fibre-Reinforced-Polymer Composites, M. J. Hinton, A. S. Kaddour, and P. D. Soden, Eds., Oxford: Elsevier, 2004, pp. 30–51. doi: 10.1016/B978-008044475-8/50003-2.
  • [42] S. Paunikar and S. Kumar, “Effect of CNT waviness on the effective mechanical properties of long and short CNT reinforced composites,” Comput. Mater. Sci., vol. 95, pp. 21–28, Dec. 2014, doi: 10.1016/j.commatsci.2014.06.034.
  • [43] F. Aghadavoudi, H. Golestanian, and Y. Tadi Beni, “Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling,” Polym. Compos., vol. 39, no. 12, pp. 4513–4523, 2018, doi: 10.1002/pc.24557.
  • [44] M. Garg, S. Sharma, and R. Mehta, “Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites,” Compos. Part Appl. Sci. Manuf., vol. 76, pp. 92–101, Sep. 2015, doi: 10.1016/j.compositesa.2015.05.012.
  • [45] M. A. Badie, E. Mahdi, and A. M. S. Hamouda, “An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft,” Mater. Des., vol. 32, no. 3, pp. 1485–1500, Mar. 2011, doi: 10.1016/j.matdes.2010.08.042.

A numerical and theoretical investigation into torsional buckling of composite driveshaft incorporating carbon nanotube

Year 2023, Volume: 14 Issue: 4, 671 - 681, 31.12.2023
https://doi.org/10.24012/dumf.1336638

Abstract

Composite driveshafts have emerged as a potent substitute for traditional driveshafts because of their excellent strength-to-weight and stiffness-to-weight ratios. At the same time, usage of multi-walled carbon nanotubes (MWCNTs) as a reinforcement has gained a great momentum due to their superb mechanical, electrical, and thermal characteristics. In this work, a micromechanical model combining the rule of mixtures and the Halpin-Tsai (H-T) model was used to calculate elastic constants of MWCNTs-added carbon fiber reinforced epoxy resin. This micromechanical model considers the effect of agglomeration, aspect ratio, waviness, and random orientation of MWCNTs. Elastic constants of MWCNTs/epoxy resin calculated by using micromechanical model was compared by experimental results available in the literature. Moreover, finite element analysis (FEA) was carried out to predict the critical torsional buckling load of composite driveshafts for various MWCNTs concentrations and fiber orientation angles. The FEA results were compared with the results obtained theoretically. The results showed that Young’s modulus of MWCNTs/epoxy resin calculated by using the micromechanical model is in compliance with the experimental findings. When compared to pure carbon fiber-reinforced epoxy resin, E1, E2, G12, and G23 (elastic constants of composite lamina) showed improvements of 0.66%, 27.80%, 49.02%, and 37.50%, respectively, in the case of 10vol.% MWCNTs addition. The ply orientation angle has a more dominant effect on Tcr than the MWCNTs concentration.

References

  • [1] H. Taş and I. F. Soykok, “Effects of carbon nanotube inclusion into the carbon fiber reinforced laminated composites on flexural stiffness: A numerical and theoretical study,” Compos. Part B Eng., vol. 159, pp. 44–52, Feb. 2019, doi: 10.1016/j.compositesb.2018.09.055.
  • [2] E. M. Soliman, M. P. Sheyka, and M. R. Taha, “Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes,” Int. J. Impact Eng., vol. 47, pp. 39–47, Sep. 2012, doi: 10.1016/j.ijimpeng.2012.03.002.
  • [3] J. Galos, “Thin-ply composite laminates: a review,” Compos. Struct., vol. 236, p. 111920, Mar. 2020, doi: 10.1016/j.compstruct.2020.111920.
  • [4] S. K. Georgantzinos, P. A. Antoniou, G. I. Giannopoulos, A. Fatsis, and S. I. Markolefas, “Design of Laminated Composite Plates with Carbon Nanotube Inclusions against Buckling: Waviness and Agglomeration Effects,” Nanomaterials, vol. 11, no. 9, Art. no. 9, Sep. 2021, doi: 10.3390/nano11092261.
  • [5] “Automotive Composites Market Size, Share & Global Forecast Analysis: 2019-2024,” Stratview Research, SRTI130, Oct. 2019. Accessed: Jul. 18, 2023. [Online]. Available: https://www.stratviewresearch.com/581/automotive-composites-market.html
  • [6] R. Kannan, I. D. Lawrence, G. Kaviprakash, and A. Regan, “Design and Analysis of Composite Drive Shaft for Automotive Application,” Int. J. Eng. Res. Technol., vol. 3, pp. 429–436, Aug. 2014.
  • [7] B. Altin, A. A. Bekem, and A. Ünal, “Determination of Design Criteria for Composite Drive Shaft in Automobiles,” Politek. Derg., pp. 1–1, Dec. 2023, doi: 10.2339/politeknik.1028437.
  • [8] S. K. S. Nadeem, G. Giridhara, and H. K. Rangavittal, “A Review on the design and analysis of composite drive shaft,” Mater. Today Proc., vol. 5, no. 1, Part 3, pp. 2738–2741, Jan. 2018, doi: 10.1016/j.matpr.2018.01.058.
  • [9] A. Bolshikh, “Computational and experimental study of the strength of a composite drive shaft,” Transp. Probl., vol. 16, no. 1, p. 75, 2021.
  • [10] V. Chougule, A. Gupta, and S. Chavan, “Design and Manufacturing of Carbon Fiber Composite Drive Shaft as an Alternative to Conventional Steel Drive Shaft,” Int. J. Innov. Sci. Res. Technol., vol. 3, no. 10, pp. 674–683, 2018.
  • [11] A. Ravi, “Design, Comparison and Analysis of a Composite Drive Shaft for an Automobile,” Int. Rev. Appl. Eng. Res., vol. 4, no. 1, pp. 21–28, 2014.
  • [12] V. S. Bhajantri, S. C. Bajantri, A. M. Shindolkar, and S. S. Amarapure, “DESIGN AND ANALYSIS OF COMPOSITE DRIVE SHAFT,” Int. J. Res. Eng. Technol., vol. 3, no. 3, pp. 738–745, 2014.
  • [13] B. Gireesh, S. Shrishail B, and V. N. Satwik, “Finite Element & Experimental Investigation of Composite Torsion Shaft,” Int. J. Eng. Res. Appl., vol. 3, no. 2, pp. 1510–1517, 2013.
  • [14] T. Rangaswamy and S. Vijayarangan, “Optimal Sizing and Stacking Sequence of Composite Drive Shafts,” vol. 11, Jan. 2005.
  • [15] G. ALAR ÖNER, “Torsional Buckling to Thin Walled Composite Tubes,” Ph.D. Thesis, Atatürk University, 2009.
  • [16] N. Rastogi, “Design of Composite Driveshafts for Automotive Applications,” SAE International, Warrendale, PA, SAE Technical Paper 2004-01–0485, Mar. 2004. doi: 10.4271/2004-01-0485.
  • [17] M. M. Shokrieh, A. Hasani, and L. B. Lessard, “Shear buckling of a composite drive shaft under torsion,” Compos. Struct., vol. 64, no. 1, pp. 63–69, Apr. 2004, doi: 10.1016/S0263-8223(03)00214-9.
  • [18] S. Saha and S. Bal, “Influence of nanotube content on the mechanical and thermo-mechanical behaviour of –COOH functionalized MWNTs/epoxy composites,” Bull. Mater. Sci., vol. 40, no. 5, pp. 945–956, Sep. 2017, doi: 10.1007/s12034-017-1433-x.
  • [19] L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load transfer in carbon nanotube epoxy composites,” Appl. Phys. Lett., vol. 73, no. 26, pp. 3842–3844, Dec. 1998, doi: 10.1063/1.122911.
  • [20] A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Compos. Sci. Technol., vol. 62, no. 15, pp. 1993–1998, Nov. 2002, doi: 10.1016/S0266-3538(02)00129-X.
  • [21] N.-H. Tai, M.-K. Yeh, and J.-H. Liu, “Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement,” Carbon, vol. 42, no. 12–13, pp. 2774–2777, 2004, doi: 10.1016/j.carbon.2004.06.002.
  • [22] V. Jain, S. Jaiswal, K. Dasgupta, and D. Lahiri, “Influence of carbon nanotube on interfacial and mechanical behavior of carbon fiber reinforced epoxy laminated composites,” Polym. Compos., vol. 43, no. 9, pp. 6344–6354, 2022, doi: 10.1002/pc.26943.
  • [23] M. Hassanzadeh-Aghdam, R. Ansari, and A. Darvizeh, “A new micromechanics approach for predicting the elastic response of polymer nanocomposites reinforced with randomly oriented and distributed wavy carbon nanotubes,” J. Compos. Mater., vol. 51, no. 20, pp. 2899–2912, Aug. 2017, doi: 10.1177/0021998317712571.
  • [24] F. T. Fisher, R. D. Bradshaw, and L. C. Brinson, “Fiber waviness in nanotube-reinforced polymer composites—I: Modulus predictions using effective nanotube properties,” Compos. Sci. Technol., vol. 63, no. 11, pp. 1689–1703, Aug. 2003, doi: 10.1016/S0266-3538(03)00069-1.
  • [25] V. Anumandla and R. F. Gibson, “A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites,” Compos. Part Appl. Sci. Manuf., vol. 37, no. 12, pp. 2178–2185, Dec. 2006, doi: 10.1016/j.compositesa.2005.09.016.
  • [26] E. T. Thostenson and T.-W. Chou, “On the elastic properties of carbon nanotube-based composites: modelling and characterization,” J. Phys. Appl. Phys., vol. 36, no. 5, p. 573, Feb. 2003, doi: 10.1088/0022-3727/36/5/323.
  • [27] G. D. Seidel and D. C. Lagoudas, “Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites,” Mech. Mater., vol. 38, no. 8, pp. 884–907, Aug. 2006, doi: 10.1016/j.mechmat.2005.06.029.
  • [28] J. Pan, L. Bian, H. Zhao, and Y. Zhao, “A new micromechanics model and effective elastic modulus of nanotube reinforced composites,” Comput. Mater.Sci., vol. 113, pp. 21–26, Feb. 2016, doi: 10.1016/j.commatsci.2015.11.009.
  • [29] M. Omidi, H. Rokni D.T., A. S. Milani, R. J. Seethaler, and R. Arasteh, “Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures,” Carbon, vol. 48, no. 11, pp. 3218–3228, Sep. 2010, doi: 10.1016/j.carbon.2010.05.007.
  • [30] S. K. Georgantzinos, P. Antoniou, S. Markolefas, and G. Giannopoulos, “Finite element predictions on vibrations of laminated composite plates incorporating the random orientation, agglomeration, and waviness of carbon nanotubes,” Acta Mech., vol. 233, no. 5, pp. 2031–2059, May 2022, doi: 10.1007/s00707-022-03179-6.
  • [31] M. K. Hassanzadeh-Aghdam and J. Jamali, “A new form of a Halpin–Tsai micromechanical model for characterizing the mechanical properties of carbon nanotube-reinforced polymer nanocomposites,” Bull. Mater. Sci., vol. 42, no. 3, p. 117, Apr. 2019, doi: 10.1007/s12034-019-1784-6.
  • [32] M.-K. Yeh, T.-H. Hsieh, and N.-H. Tai, “Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites,” Mater. Sci. Eng. A, vol. 483–484, pp. 289–292, Jun. 2008, doi: 10.1016/j.msea.2006.09.138.
  • [33] S. Kanagaraj, F. R. Varanda, T. V. Zhil’tsova, M. S. A. Oliveira, and J. A. O. Simões, “Mechanical properties of high density polyethylene/carbon nanotube composites,” Compos. Sci. Technol., vol. 67, no. 15, pp. 3071–3077, Dec. 2007, doi: 10.1016/j.compscitech.2007.04.024.
  • [34] K. Duan et al., “A critical role of CNT real volume fraction on nanocomposite modulus,” Carbon, vol. 189, pp. 395–403, Apr. 2022, doi: 10.1016/j.carbon.2021.12.083.
  • [35] J. F. Wang, J. P. Yang, L. -h. Tam, and W. Zhang, “Effect of CNT volume fractions on nonlinear vibrations of PMMA/CNT composite plates: A multiscale simulation,” Thin-Walled Struct., vol. 170, p. 108513, Jan. 2022, doi: 10.1016/j.tws.2021.108513.
  • [36] M. Tarfaoui, K. Lafdi, and A. El Moumen, “Mechanical properties of carbon nanotubes based polymer composites,” Compos. Part B Eng., vol. 103, pp. 113–121, Oct. 2016, doi: 10.1016/j.compositesb.2016.08.016.
  • [37] A. K. Kaw, Mechanics of Composite Materials, Second Edition. U.S.: CRC Press, 2006.
  • [38] J. C. H. Affdl and J. L. Kardos, “The Halpin-Tsai equations: A review,” Polym. Eng. Sci., vol. 16, no. 5, pp. 344–352, 1976, doi: 10.1002/pen.760160512.
  • [39] D. L. Logan, A first course in the finite element method, Fifth Edition. USA: Cengage Learning, 2011.
  • [40] EnginSoft, “Ansys Composite PrepPost: A user-friendly approach to analyze composite material structures.” Accessed: Jul. 21, 2023. [Online]. Available: https://www.enginsoft.com/solutions/ansys-composite-preppost.html
  • [41] P. D. Soden, M. J. Hinton, and A. S. Kaddour, “Chapter 2.1 - Lamina properties, lay-up configurations and loading conditions for a range of fibre reinforced composite laminates,” in Failure Criteria in Fibre-Reinforced-Polymer Composites, M. J. Hinton, A. S. Kaddour, and P. D. Soden, Eds., Oxford: Elsevier, 2004, pp. 30–51. doi: 10.1016/B978-008044475-8/50003-2.
  • [42] S. Paunikar and S. Kumar, “Effect of CNT waviness on the effective mechanical properties of long and short CNT reinforced composites,” Comput. Mater. Sci., vol. 95, pp. 21–28, Dec. 2014, doi: 10.1016/j.commatsci.2014.06.034.
  • [43] F. Aghadavoudi, H. Golestanian, and Y. Tadi Beni, “Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling,” Polym. Compos., vol. 39, no. 12, pp. 4513–4523, 2018, doi: 10.1002/pc.24557.
  • [44] M. Garg, S. Sharma, and R. Mehta, “Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites,” Compos. Part Appl. Sci. Manuf., vol. 76, pp. 92–101, Sep. 2015, doi: 10.1016/j.compositesa.2015.05.012.
  • [45] M. A. Badie, E. Mahdi, and A. M. S. Hamouda, “An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft,” Mater. Des., vol. 32, no. 3, pp. 1485–1500, Mar. 2011, doi: 10.1016/j.matdes.2010.08.042.
There are 45 citations in total.

Details

Primary Language English
Subjects Solid Mechanics, Numerical Modelling and Mechanical Characterisation, Mechanical Engineering (Other), Composite and Hybrid Materials
Journal Section Articles
Authors

Hamza Taş 0000-0002-6527-338X

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date August 2, 2023
Published in Issue Year 2023 Volume: 14 Issue: 4

Cite

IEEE H. Taş, “A numerical and theoretical investigation into torsional buckling of composite driveshaft incorporating carbon nanotube”, DUJE, vol. 14, no. 4, pp. 671–681, 2023, doi: 10.24012/dumf.1336638.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456