Research Article
BibTex RIS Cite

Venturi aygıtı ile oluşturulan su jetinin havalandırma performansının deneysel incelenmesi

Year 2024, Volume: 15 Issue: 1, 251 - 260, 29.03.2024
https://doi.org/10.24012/dumf.1385014

Abstract

Sularda havalandırmanın amacı gazların sulara transferi veya sulardan uzaklaştırılmasıdır. Çözünmüş oksijen canlı yaşamı için kritik öneme sahiptir. Su mühendisliğinde, su jetleri kullanılarak havalandırma ve oksijen transferi işlemine sık rastlanır. Bu çalışmada boğaz bölgesinde hava deliğine sahip olan çeşitli venturi ağızlıklar imal edilerek, bunların oksijen transfer verimleri ve havalandırma performansları deneysel olarak incelenmiştir. Çalışmada boğaz bölgesi çapı d=14, 17 ve 20 mm olan venturiler kullanılmıştır. Hava delikleri çapının boğaz bölgesi çapına oranı da hd/d=0.1, hd/d=0.2 ve hd/d=0.3 olarak alınmıştır. Dokuz farklı delik çapı için farklı deneyler yapılmıştır. Bunun yanı sıra boğaz bölgesi uzunluğunun boğaz bölgesi çapına oranı /d=1.00 ve/d=0.50 olarak alınmıştır. Ayrıca bütün ağızlıklar için çıkış uzunluğunun çıkış çapına oranı L/D=1 ve L/D=2 ve bir adet venturi için de L/D=1, 2, 3, 4 ve 5 değerleri de göz önüne alınarak kapsamlı deneyler yürütülmüştür. Karşılaştırmalar yapabilmek için dairesel ağızlık için de deneyler yapılmıştır. Bu çalışmada venturi ağızlıkların dairesel ağızlıklara göre oldukça iyi sonuçlar verdiği, hd/d=0.2 ve hd/d=0.3, L/D=1, /d=0.50 ve d/D=0.50 oranları için daha yüksek havalandırma performansı değerleri elde edilmiştir. Venturi ağızlığın havalandırma performansının dairesel ağızlığın havalandırma performansından yaklaşık olarak 6.5 kat ve oksijen transferi açısından 2.5 kat daha fazla olduğu bulunmuştur.

Ethical Statement

Hazırlanan makalede etik kurul izni alınmasına gerek yoktur” “Hazırlanan makalede herhangi bir kişi/kurum ile çıkar çatışması bulunmamaktadır.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeleri

Project Number

FÜBAP-898

Thanks

FÜBAP’a teşekkürlerimizi bildiririz.

References

  • [1] Koçyiğit, Ş. (2004). Examination of the Ventilation Performance of the Water Jet Created with the Venturi Device. Master's Thesis, Fırat University, Institute of Science and Technology, June 2004, Elazığ.
  • [2] Bağatur, T., 2000, The effect of nozzle type on ventilation performance in water jet ventilation system, Doctoral Thesis, Fırat University Institute of Science and Technology, 89 s.
  • [3] Jennekens, H., 1975, Waterstrall beluchting voor biologische waterzuiverings installaties, H2O, 8, 479-482.
  • [4] Ohkawa, A., Kusabiraki, D., Shiokawa, Y., Sakai, N. and Fujii, M., 1986, Flow and oxygen transfer in a plunging water system using inclined short nozzles and performance characteristics of its system in aerobic treatment of wastewater, Biotechnol. Bioeng., 28, 1845-1856.
  • [5] Canepa, S. and Hager W.H., 2003, Effect of jet air content on plunge pool scour, Journal of Hydraulic Engineering – ASCE, 129(5), 358-365.
  • [6] Emiroglu, M.E. and Baylar, A., 2003, Role of nozzles with air holes in air entrainment by a water jet, Water Quality Research Journal of Canada, 38(4), 785-795.
  • [7] Emiroglu, M.E. and Baylar, A., 2003, Study of the influence of air holes along length of convergent-divergent passage of a venturi device on aeration, Journal of Hydraulic Research, 00, 0, 1-8.
  • [8] Baylar, A. and Emiroglu, M.E., 2003, The influence of air holes at the throat portion of a venturi device on air entrainment and oxygen transfer, Water & Maritime Engineering 156, 1-7.
  • [9] Out, L., Timmons, M.B. and Vinci, B.J., 2001, Characterizing bubble penetration from a falling stream, Aquacultural Engineering, 24(4), 279-287.
  • [10] Yamagiwa, K., Ito, A., Tajima, K., Yoshida, M. and Ohkawa, A., 2000, Effect of nozzle contraction angle on air entrainment rate of a vertical plunging liquid jet, Journal of Chemical Engineering of Japan, 33(5), 805-807.
  • [11] Bin, A.K., 1993, Gas entrainment by plunging liquid jets, Chem. Eng. Sci., 48, 21, 3585-3630.
  • [12] Kusabiraki, D., Murota, M., Ohno, S., Yamagiwa, K., Yasuda, M. and Ohkowa, A., 1990, Gas entrainment rate and flow pattern in a plunging liquid jet aeration system using inclined nozzles, Journal of Chemical Engineering of Japan, 23(6), 704-710.
  • [13] Sene, K.J., 1988, Air entrainment by plunging jets, Chemical Engineering Science, 43, 10, 2615-2623.
  • [14] Van de Sande, E. and Smith, J.M., 1973, Surface entrainment of air by high velocity water jet, Chemical Engineering Science, 28, 5, 1161-1168.
  • [15] Zhang, W., & Zhu, D. Z. (2014). Trajectories of air-water bubbly jets in crossflows. Journal of Hydraulic Engineering, 140(7), 06014011.
  • [16] Khound, A., Yadav, A., Sarkar, S., & Kumar, A. (2017). Influence of throat length and flow parameters on a venturi as an aerator. International Journal of Agriculture, Environment and Biotechnology, 10(6), 717-724.
  • [17] Shukla, B. K., Kumar, V. R., & Goel, A. (2018). A comprehensive review of surface jet aerators. Pollut. Res, 37, 20-25.
  • [18] Yadav, A., Kumar, A., & Sarkar, S. (2019). Design characteristics of venturi aeration system. International Journal of Innovative Technology and Exploring Engineering, 8(11), 63-70.
  • [19] Puri, D., Sihag, P., & Thakur, M. S. (2023). A review: Aeration efficiency of hydraulic structures in diffusing DO in water. MethodsX, 102092.
  • [20] Dange, A., & Warkhedkar, R. (2023). An experimental study of venturi aeration system. Materials Today: Proceedings, 72, 615-621.
  • [21] Yadav, A., & Roy, S. M. (2023). An artificial neural network-particle swarm optimization (ANN-PSO) approach to predict the aeration efficiency of venturi aeration system. Smart Agricultural Technology, 4, 100230.
  • [22] Reda Hamed, M. A. (2023). Configuration influence in relation to fluid flow of venturi system. Environmental Quality Management, 32(3), 203-208.
  • [23] Ochoa, E. D. O., García, M. C., Padilla, N. D., & Remolina, A. M. (2022). Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system. Heliyon, 8(10).

Experimental study on the aeration performance of water jet which is performed by a venturi device

Year 2024, Volume: 15 Issue: 1, 251 - 260, 29.03.2024
https://doi.org/10.24012/dumf.1385014

Abstract

The purpose of aeration in water is to transfer or remove gases from the water. Dissolved oxygen is critical for living life. In water engineering, aeration and oxygen transfer using water jets are common. In this study, various venturi nozzles with air holes in the throat portion were manufactured and meaningful experiments were conducted to determine their oxygen transfer efficiency and aeration performance., the venturi nozzles with throat diameters 14, 17 and 20 mm were used in the experimental study. The ratio of the diameter of the air holes to the diameter of the throat portion is taken as 0.1, 0.2 and 0.3. Different experiments were carried out for nine different hole diameters. In addition, the ratio of the throat portion length to the throat portion diameter was taken as 1.00 and 0.50. In addition, comprehensive experiments were carried out by considering the ratio of outlet length to outlet diameter for all nozzles, 1 and 2, and for one venturi, 1, 2, 3, 4 and 5. The experiments were also conducted for the circular nozzle to make comparisons. In this study, venturi nozzles gave better results than circular nozzles, and higher aeration performance values were obtained for the ratios 0.2 and 0.3, 1, 0.50 and 0.50. It was found that the aeration performance of the venturi nozzle was approximately 6.5 times higher than the air entrainment rate performance of the circular nozzle and 2.5 times higher in terms of oxygen transfer.

Project Number

FÜBAP-898

References

  • [1] Koçyiğit, Ş. (2004). Examination of the Ventilation Performance of the Water Jet Created with the Venturi Device. Master's Thesis, Fırat University, Institute of Science and Technology, June 2004, Elazığ.
  • [2] Bağatur, T., 2000, The effect of nozzle type on ventilation performance in water jet ventilation system, Doctoral Thesis, Fırat University Institute of Science and Technology, 89 s.
  • [3] Jennekens, H., 1975, Waterstrall beluchting voor biologische waterzuiverings installaties, H2O, 8, 479-482.
  • [4] Ohkawa, A., Kusabiraki, D., Shiokawa, Y., Sakai, N. and Fujii, M., 1986, Flow and oxygen transfer in a plunging water system using inclined short nozzles and performance characteristics of its system in aerobic treatment of wastewater, Biotechnol. Bioeng., 28, 1845-1856.
  • [5] Canepa, S. and Hager W.H., 2003, Effect of jet air content on plunge pool scour, Journal of Hydraulic Engineering – ASCE, 129(5), 358-365.
  • [6] Emiroglu, M.E. and Baylar, A., 2003, Role of nozzles with air holes in air entrainment by a water jet, Water Quality Research Journal of Canada, 38(4), 785-795.
  • [7] Emiroglu, M.E. and Baylar, A., 2003, Study of the influence of air holes along length of convergent-divergent passage of a venturi device on aeration, Journal of Hydraulic Research, 00, 0, 1-8.
  • [8] Baylar, A. and Emiroglu, M.E., 2003, The influence of air holes at the throat portion of a venturi device on air entrainment and oxygen transfer, Water & Maritime Engineering 156, 1-7.
  • [9] Out, L., Timmons, M.B. and Vinci, B.J., 2001, Characterizing bubble penetration from a falling stream, Aquacultural Engineering, 24(4), 279-287.
  • [10] Yamagiwa, K., Ito, A., Tajima, K., Yoshida, M. and Ohkawa, A., 2000, Effect of nozzle contraction angle on air entrainment rate of a vertical plunging liquid jet, Journal of Chemical Engineering of Japan, 33(5), 805-807.
  • [11] Bin, A.K., 1993, Gas entrainment by plunging liquid jets, Chem. Eng. Sci., 48, 21, 3585-3630.
  • [12] Kusabiraki, D., Murota, M., Ohno, S., Yamagiwa, K., Yasuda, M. and Ohkowa, A., 1990, Gas entrainment rate and flow pattern in a plunging liquid jet aeration system using inclined nozzles, Journal of Chemical Engineering of Japan, 23(6), 704-710.
  • [13] Sene, K.J., 1988, Air entrainment by plunging jets, Chemical Engineering Science, 43, 10, 2615-2623.
  • [14] Van de Sande, E. and Smith, J.M., 1973, Surface entrainment of air by high velocity water jet, Chemical Engineering Science, 28, 5, 1161-1168.
  • [15] Zhang, W., & Zhu, D. Z. (2014). Trajectories of air-water bubbly jets in crossflows. Journal of Hydraulic Engineering, 140(7), 06014011.
  • [16] Khound, A., Yadav, A., Sarkar, S., & Kumar, A. (2017). Influence of throat length and flow parameters on a venturi as an aerator. International Journal of Agriculture, Environment and Biotechnology, 10(6), 717-724.
  • [17] Shukla, B. K., Kumar, V. R., & Goel, A. (2018). A comprehensive review of surface jet aerators. Pollut. Res, 37, 20-25.
  • [18] Yadav, A., Kumar, A., & Sarkar, S. (2019). Design characteristics of venturi aeration system. International Journal of Innovative Technology and Exploring Engineering, 8(11), 63-70.
  • [19] Puri, D., Sihag, P., & Thakur, M. S. (2023). A review: Aeration efficiency of hydraulic structures in diffusing DO in water. MethodsX, 102092.
  • [20] Dange, A., & Warkhedkar, R. (2023). An experimental study of venturi aeration system. Materials Today: Proceedings, 72, 615-621.
  • [21] Yadav, A., & Roy, S. M. (2023). An artificial neural network-particle swarm optimization (ANN-PSO) approach to predict the aeration efficiency of venturi aeration system. Smart Agricultural Technology, 4, 100230.
  • [22] Reda Hamed, M. A. (2023). Configuration influence in relation to fluid flow of venturi system. Environmental Quality Management, 32(3), 203-208.
  • [23] Ochoa, E. D. O., García, M. C., Padilla, N. D., & Remolina, A. M. (2022). Design and experimental evaluation of a Venturi and Venturi-Vortex microbubble aeration system. Heliyon, 8(10).
There are 23 citations in total.

Details

Primary Language English
Subjects Hydromechanics, Water Resources Engineering, Water Resources and Water Structures
Journal Section Articles
Authors

Şermin Koçyiğit 0000-0002-7283-8967

M. Emin Emiroğlu 0000-0002-3603-0274

Project Number FÜBAP-898
Early Pub Date March 29, 2024
Publication Date March 29, 2024
Submission Date November 2, 2023
Acceptance Date November 24, 2023
Published in Issue Year 2024 Volume: 15 Issue: 1

Cite

IEEE Ş. Koçyiğit and M. E. Emiroğlu, “Experimental study on the aeration performance of water jet which is performed by a venturi device”, DUJE, vol. 15, no. 1, pp. 251–260, 2024, doi: 10.24012/dumf.1385014.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456