Research Article
BibTex RIS Cite

Numerical Analysis of Dual Slot Pulsating Nanofluid Impinging Jets

Year 2024, Volume: 15 Issue: 4, 881 - 890
https://doi.org/10.24012/dumf.1567752

Abstract

Jet impingement is a widely utilized technique in engineering, particularly for cooling high-temperature systems like aircraft engines and electronic devices. This study employs numerical analysis to examine the flow dynamics of dual impinging pulsating nanofluid jets, utilizing the ANSYS software platform. This research examines the combined impact of key parameters, including jet geometry, pulsation frequency and amplitude, nanoparticle volume concentration, and Reynolds numbers, on the efficiency of heat transfer. The impact of aluminum oxide (Al₂O₃) nanofluids with varying concentrations (1%, 2%, 4%, and 5%) on thermal performance is assessed. The findings of the study demonstrate that the pulsating jets generate bidirectional swirling flows and reverse vortices upon impact with the surface, resulting in notable enhancements in local heat transfer rates. These vortices expand and form wall jets, which contribute to an increase in the heat transfer coefficients and Nusselt numbers. The simulations demonstrate that higher pulsation frequencies (30 Hz) result in a 10% increase in heat transfer efficiency compared to lower frequencies (10 Hz). This is attributed to enhanced flow dynamics and improved heat distribution. Moreover, the incorporation of nanoparticles markedly enhances heat transfer efficiency. The Nusselt numbers were observed to increase by 18% when the concentration of nanoparticles reached 5%, in comparison to plain water. Additionally, the study underscores the significance of jet spacing, wherein an optimal separation distance of 100 mm between the dual jets was identified as a means of maximizing heat transfer by fostering effective vortex interactions. Higher Reynolds numbers contribute to the formation of thinner thermal boundary layers, thereby facilitating increased heat transfer rates, particularly at the stagnation points where the flow impinges directly on the surface. Overall, the study demonstrates that substantial enhancements in heat transfer can be achieved by optimizing key parameters such as pulsating frequency, amplitude, nanoparticle volume concentration, and jet distances.

References

  • [1] Y. J. Chou and Y. H. Hung, “Impingement cooling of an isothermally heated surface with a confined slot jet,” J. Heat Transfer, vol. 116, no. 2, pp. 479–482, May 1994, doi: 10.1115/1.2911422.
  • [2] A. H. Beitelmal, M. A. Saad, and C. D. Patel, “The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet,” Int. J. Heat Fluid Flow, vol. 21, no. 2, pp. 156–163, Apr. 2000, doi: 10.1016/S0142-727X(99)00080-6.
  • [3] Y. M. Chung, K. H. Luo, and N. D. Sandham, “Numerical study of momentum and heat transfer in unsteady impinging jets,” Int. J. Heat Fluid Flow, vol. 23, no. 5, pp. 592–600, Oct. 2002, doi: 10.1016/S0142-727X(02)00155-8.
  • [4] B. Sagot, G. Antonini, A. Christgen, and F. Buron, “Jet impingement heat transfer on a flat plate at a constant wall temperature,” Int. J. Therm. Sci., vol. 47, no. 12, pp. 1610–1619, 2008, doi: https://doi.org/10.1016/j.ijthermalsci.2007.10.020.
  • [5] Z. Trávníček, P. Dančová, J. Kordík, T. Vít, and M. Pavelka, “Heat and mass transfer caused by a laminar channel flow equipped with a synthetic jet array,” J. Therm. Sci. Eng. Appl., vol. 2, no. 4, Feb. 2011, doi: 10.1115/1.4003428.
  • [6] F. Afroz and M. A. R. Sharif, “Numerical study of heat transfer from an isothermally heated flat surface due to turbulent twin oblique confined slot-jet impingement,” Int. J. Therm. Sci., vol. 74, pp. 1–13, 2013, doi: https://doi.org/10.1016/j.ijthermalsci.2013.07.004.
  • [7] T. Demircan and H. Turkoglu, “Numerical analysis of effects of the oscillation characteristics and the nozzle to plate distance on the flow and heat transfer in oscillating impinging jets,” Cilt, vol. 25, no. 4, pp. 895–904, 2010.
  • [8] N. Çelik, “Investigation of the effects of optimum nozzle type on the impinging jest”, Ph.D. dissertation, Dept. Mech. Eng., Firat Univ., Elazığ, TR, 2006.
  • [9] N. Çeli̇k, D.W. Bettenhausen, D. Ryan Lovik, “Formation of Co-Axıal jets and their downstream development”, 2012.
  • [10] N. Çeli̇k, H. Eren, “Effects of stagnation region turbulence of an impinging jet on heat transfer”, J. Therm. Sci. Technol., vol. 30, pp. 91–98, 2010.
  • [11] A. Nabadavis, D.P. Mishra, “Numerical investigation of jet impingement heat transfer on a flat plate, Carbon - Sci. Technol., vol. 8, pp. 1–12, 2016.
  • [12] J. Y. San and J. J. Chen, “Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array,” Int. J. Heat Mass Transf., vol. 71, pp. 8–17, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.11.079.
  • [13] S. S. N. Chougule N.K., Parishwad G.V., Gore P.R., Pagnis S., “CFD Analysis of multi-jet air impingement on flat plate,” 2011.
  • [14] S. Caliskan, S. Baskaya, and T. Calisir, “Experimental and numerical investigation of geometry effects on multiple impinging air jets,” Int. J. Heat Mass Transf., vol. 75, pp. 685–703, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.04.005.
  • [15] M. A. Pakhomov and V. I. Terekhov, “Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet,” Int. J. Therm. Sci., vol. 87, pp. 85–93, 2015, doi: https://doi.org/10.1016/j.ijthermalsci.2014.08.007.
  • [16] E. C. Mladin and D. A. Zumbrunnen, “Local convective heat transfer to submerged pulsating jets,” Int. J. Heat Mass Transf., vol. 40, no. 14, pp. 3305–3321, 1997, doi: 10.1016/S0017-9310(96)00380-8.
  • [17] D. J. Sailor, D. J. Rohli, and Q. Fu, “Effect of variable duty cycle flow pulsations on heat transfer enhancement for an impinging air jet,” Int. J. Heat Fluid Flow, vol. 20, no. 6, pp. 574–580, 1999, doi: 10.1016/S0142-727X(99)00055-7.
  • [18] R. Zulkifli, K. Sopian, S. Abdullah, and M. Takriff, “Comparison of local nusselt number between steady and pulsating jet at different jet reynolds number,” 2009.
  • [19] T. S. Zhao and P. Cheng, “Oscillatory heat transfer in a pipe subjected to a laminar reciprocating flow,” J. Heat Transfer, vol. 118, no. 3, pp. 592–597, Aug. 1996, doi: 10.1115/1.2822673.
  • [20] T. Demircan and H. Turkoglu, “The numerical analysis of oscillating rectangular impinging jets,” Numer. Heat Transf. Part A Appl., vol. 58, no. 2, pp. 146–161, 2010, doi: 10.1080/10407782.2010.496669.
  • [21] Chaugule, V., Narayanaswamy, R., Lucey, A.D., Narayanan, V., Jewkes, J. (2018). Particle image velocimetry and infrared thermography of turbulent jet impingement on an oscillating surface. Experimental Thermal and Fluid Science. 98, 576–593.
  • [22] Selimefendigil, F., Öztop, H.F. (2014). Pulsating nanofluids jet impingement cooling of a heated horizontal surface. International Journal of Heat and Mass Transfer. 69 54–65.
  • [23] E. M. Alawadhi, “Meshing guide,” Finite elem. simulations using ANSYS, vol. 15317, no. November, pp. 407–424, 2020, doi: 10.1201/b18949-12.
  • [24] “Fluent12,” ANSYS FLUENT 12.0 User’s Guid., no. April, pp. 1–2070, 2009.
  • [25] D. A. Zumbrunnen, F. P. Incropera, and R. Viskanta, “A laminar boundary layer model of heat transfer due to a nonuniform planar jet impinging on a moving plate,” Wärme- und Stoffübertragung, vol. 27, no. 5, pp. 311–319, 1992, doi: 10.1007/BF01589969.
  • [26] P. Li, D. Guo, and R. Liu, “Mechanism analysis of heat transfer and flow structure of periodic pulsating nanofluids slot-jet impingement with different waveforms,” Appl. Therm. Eng., vol. 152, pp. 937–945, Apr. 2019, doi: 10.1016/j.applthermaleng.2019.01.086.
  • [27] G. A. Rao, M. Kitron-Belinkov, and Y. Levy, “Numerical analysis of a multiple jet impingement system,” Proc. ASME Turbo Expo, vol. 3, no. PART A, pp. 629–639, 2009, doi: 10.1115/GT2009-59719.
  • [28] N. C. Roy, “Steady and Oscillating Characteristics of Natural Convection in an Enclosure,” J. Thermophys. Heat Transf., vol. 35, no. 2, pp. 268–278, Oct. 2020, doi: 10.2514/1.T6117.
  • [29] W. Liewkongsataporn, T. Patterson, and F. Ahrens, “Pulsating jet impingement heat transfer enhancement,” Dry. Technol., vol. 26, no. 4, pp. 433–442, 2008, doi: 10.1080/07373930801929268.

Numerical Analysis of Dual Slot Pulsating Nanofluid Impinging Jets

Year 2024, Volume: 15 Issue: 4, 881 - 890
https://doi.org/10.24012/dumf.1567752

Abstract

Jet impingement is a widely utilized technique in engineering, particularly for cooling high-temperature systems like aircraft engines and electronic devices. This study employs numerical analysis to examine the flow dynamics of dual impinging pulsating nanofluid jets, utilizing the ANSYS software platform. This research examines the combined impact of key parameters, including jet geometry, pulsation frequency and amplitude, nanoparticle volume concentration, and Reynolds numbers, on the efficiency of heat transfer. The impact of aluminum oxide (Al₂O₃) nanofluids with varying concentrations (1%, 2%, 4%, and 5%) on thermal performance is assessed. The findings of the study demonstrate that the pulsating jets generate bidirectional swirling flows and reverse vortices upon impact with the surface, resulting in notable enhancements in local heat transfer rates. These vortices expand and form wall jets, which contribute to an increase in the heat transfer coefficients and Nusselt numbers. The simulations demonstrate that higher pulsation frequencies (30 Hz) result in a 10% increase in heat transfer efficiency compared to lower frequencies (10 Hz). This is attributed to enhanced flow dynamics and improved heat distribution. Moreover, the incorporation of nanoparticles markedly enhances heat transfer efficiency. The Nusselt numbers were observed to increase by 18% when the concentration of nanoparticles reached 5%, in comparison to plain water. Additionally, the study underscores the significance of jet spacing, wherein an optimal separation distance of 100 mm between the dual jets was identified as a means of maximizing heat transfer by fostering effective vortex interactions. Higher Reynolds numbers contribute to the formation of thinner thermal boundary layers, thereby facilitating increased heat transfer rates, particularly at the stagnation points where the flow impinges directly on the surface. Overall, the study demonstrates that substantial enhancements in heat transfer can be achieved by optimizing key parameters such as pulsating frequency, amplitude, nanoparticle volume concentration, and jet distances

References

  • [1] Y. J. Chou and Y. H. Hung, “Impingement cooling of an isothermally heated surface with a confined slot jet,” J. Heat Transfer, vol. 116, no. 2, pp. 479–482, May 1994, doi: 10.1115/1.2911422.
  • [2] A. H. Beitelmal, M. A. Saad, and C. D. Patel, “The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet,” Int. J. Heat Fluid Flow, vol. 21, no. 2, pp. 156–163, Apr. 2000, doi: 10.1016/S0142-727X(99)00080-6.
  • [3] Y. M. Chung, K. H. Luo, and N. D. Sandham, “Numerical study of momentum and heat transfer in unsteady impinging jets,” Int. J. Heat Fluid Flow, vol. 23, no. 5, pp. 592–600, Oct. 2002, doi: 10.1016/S0142-727X(02)00155-8.
  • [4] B. Sagot, G. Antonini, A. Christgen, and F. Buron, “Jet impingement heat transfer on a flat plate at a constant wall temperature,” Int. J. Therm. Sci., vol. 47, no. 12, pp. 1610–1619, 2008, doi: https://doi.org/10.1016/j.ijthermalsci.2007.10.020.
  • [5] Z. Trávníček, P. Dančová, J. Kordík, T. Vít, and M. Pavelka, “Heat and mass transfer caused by a laminar channel flow equipped with a synthetic jet array,” J. Therm. Sci. Eng. Appl., vol. 2, no. 4, Feb. 2011, doi: 10.1115/1.4003428.
  • [6] F. Afroz and M. A. R. Sharif, “Numerical study of heat transfer from an isothermally heated flat surface due to turbulent twin oblique confined slot-jet impingement,” Int. J. Therm. Sci., vol. 74, pp. 1–13, 2013, doi: https://doi.org/10.1016/j.ijthermalsci.2013.07.004.
  • [7] T. Demircan and H. Turkoglu, “Numerical analysis of effects of the oscillation characteristics and the nozzle to plate distance on the flow and heat transfer in oscillating impinging jets,” Cilt, vol. 25, no. 4, pp. 895–904, 2010.
  • [8] N. Çelik, “Investigation of the effects of optimum nozzle type on the impinging jest”, Ph.D. dissertation, Dept. Mech. Eng., Firat Univ., Elazığ, TR, 2006.
  • [9] N. Çeli̇k, D.W. Bettenhausen, D. Ryan Lovik, “Formation of Co-Axıal jets and their downstream development”, 2012.
  • [10] N. Çeli̇k, H. Eren, “Effects of stagnation region turbulence of an impinging jet on heat transfer”, J. Therm. Sci. Technol., vol. 30, pp. 91–98, 2010.
  • [11] A. Nabadavis, D.P. Mishra, “Numerical investigation of jet impingement heat transfer on a flat plate, Carbon - Sci. Technol., vol. 8, pp. 1–12, 2016.
  • [12] J. Y. San and J. J. Chen, “Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array,” Int. J. Heat Mass Transf., vol. 71, pp. 8–17, 2014, doi: 10.1016/j.ijheatmasstransfer.2013.11.079.
  • [13] S. S. N. Chougule N.K., Parishwad G.V., Gore P.R., Pagnis S., “CFD Analysis of multi-jet air impingement on flat plate,” 2011.
  • [14] S. Caliskan, S. Baskaya, and T. Calisir, “Experimental and numerical investigation of geometry effects on multiple impinging air jets,” Int. J. Heat Mass Transf., vol. 75, pp. 685–703, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.04.005.
  • [15] M. A. Pakhomov and V. I. Terekhov, “Numerical study of fluid flow and heat transfer characteristics in an intermittent turbulent impinging round jet,” Int. J. Therm. Sci., vol. 87, pp. 85–93, 2015, doi: https://doi.org/10.1016/j.ijthermalsci.2014.08.007.
  • [16] E. C. Mladin and D. A. Zumbrunnen, “Local convective heat transfer to submerged pulsating jets,” Int. J. Heat Mass Transf., vol. 40, no. 14, pp. 3305–3321, 1997, doi: 10.1016/S0017-9310(96)00380-8.
  • [17] D. J. Sailor, D. J. Rohli, and Q. Fu, “Effect of variable duty cycle flow pulsations on heat transfer enhancement for an impinging air jet,” Int. J. Heat Fluid Flow, vol. 20, no. 6, pp. 574–580, 1999, doi: 10.1016/S0142-727X(99)00055-7.
  • [18] R. Zulkifli, K. Sopian, S. Abdullah, and M. Takriff, “Comparison of local nusselt number between steady and pulsating jet at different jet reynolds number,” 2009.
  • [19] T. S. Zhao and P. Cheng, “Oscillatory heat transfer in a pipe subjected to a laminar reciprocating flow,” J. Heat Transfer, vol. 118, no. 3, pp. 592–597, Aug. 1996, doi: 10.1115/1.2822673.
  • [20] T. Demircan and H. Turkoglu, “The numerical analysis of oscillating rectangular impinging jets,” Numer. Heat Transf. Part A Appl., vol. 58, no. 2, pp. 146–161, 2010, doi: 10.1080/10407782.2010.496669.
  • [21] Chaugule, V., Narayanaswamy, R., Lucey, A.D., Narayanan, V., Jewkes, J. (2018). Particle image velocimetry and infrared thermography of turbulent jet impingement on an oscillating surface. Experimental Thermal and Fluid Science. 98, 576–593.
  • [22] Selimefendigil, F., Öztop, H.F. (2014). Pulsating nanofluids jet impingement cooling of a heated horizontal surface. International Journal of Heat and Mass Transfer. 69 54–65.
  • [23] E. M. Alawadhi, “Meshing guide,” Finite elem. simulations using ANSYS, vol. 15317, no. November, pp. 407–424, 2020, doi: 10.1201/b18949-12.
  • [24] “Fluent12,” ANSYS FLUENT 12.0 User’s Guid., no. April, pp. 1–2070, 2009.
  • [25] D. A. Zumbrunnen, F. P. Incropera, and R. Viskanta, “A laminar boundary layer model of heat transfer due to a nonuniform planar jet impinging on a moving plate,” Wärme- und Stoffübertragung, vol. 27, no. 5, pp. 311–319, 1992, doi: 10.1007/BF01589969.
  • [26] P. Li, D. Guo, and R. Liu, “Mechanism analysis of heat transfer and flow structure of periodic pulsating nanofluids slot-jet impingement with different waveforms,” Appl. Therm. Eng., vol. 152, pp. 937–945, Apr. 2019, doi: 10.1016/j.applthermaleng.2019.01.086.
  • [27] G. A. Rao, M. Kitron-Belinkov, and Y. Levy, “Numerical analysis of a multiple jet impingement system,” Proc. ASME Turbo Expo, vol. 3, no. PART A, pp. 629–639, 2009, doi: 10.1115/GT2009-59719.
  • [28] N. C. Roy, “Steady and Oscillating Characteristics of Natural Convection in an Enclosure,” J. Thermophys. Heat Transf., vol. 35, no. 2, pp. 268–278, Oct. 2020, doi: 10.2514/1.T6117.
  • [29] W. Liewkongsataporn, T. Patterson, and F. Ahrens, “Pulsating jet impingement heat transfer enhancement,” Dry. Technol., vol. 26, no. 4, pp. 433–442, 2008, doi: 10.1080/07373930801929268.
There are 29 citations in total.

Details

Primary Language English
Subjects Numerical Methods in Mechanical Engineering
Journal Section Articles
Authors

Ali Taşkiran 0000-0001-6810-7291

Celal Kıstak 0000-0003-4621-5405

Sinan Kapan 0000-0001-5690-1041

Nevin Çelik 0000-0003-2456-5316

İhsan Dağtekin 0000-0003-0128-7149

Early Pub Date December 23, 2024
Publication Date
Submission Date October 16, 2024
Acceptance Date November 29, 2024
Published in Issue Year 2024 Volume: 15 Issue: 4

Cite

IEEE A. Taşkiran, C. Kıstak, S. Kapan, N. Çelik, and İ. Dağtekin, “Numerical Analysis of Dual Slot Pulsating Nanofluid Impinging Jets”, DUJE, vol. 15, no. 4, pp. 881–890, 2024, doi: 10.24012/dumf.1567752.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456