Research Article
BibTex RIS Cite

Experimental Investigation of Roughness Transfer Behavior of AA2024-T3 Aluminum Alloys in Cold Rolling

Year 2025, Volume: 16 Issue: 1, 139 - 146
https://doi.org/10.24012/dumf.1532363

Abstract

Sheet materials are manufactured with roughness in order to be ideally painted and shaped. This process is carried out in the final stage of cold rolling using roughened rolls. The sheet material passing between the rough rolls is finally roughened and put into use. Aluminum alloys are used in many industries due to their superior properties such as light weight, high corrosion resistance and high mechanical properties. This study was carried out to determine the surface roughness behavior of aluminum sheet materials in cold rolling roughening. In this context, AA2024-T3 aluminum alloys were subjected to cold rolling process using roughened rolls at different reduction ratios (1%, 5%, 10%, 20%). During the tests, the rolling forces were read from the test equipment and the roughness parameters Ra, Rv and Rp and roughness profiles of the surfaces roughened by rolling at different reduction ratios were obtained. It was determined that the rolling force and roughness transfer ratio increased as the reduction ratio increased. When the roughness parameters, roughness distribution and surface images were evaluated together in the roughness transfer with cold rolling at 1% reduction ratio, it was concluded that there was a homogeneous roughness distribution on the sheet material surfaces, while the homogeneous roughness distribution gradually deteriorated at 5% and increasing reduction ratios.

References

  • [1] X. Li, C. Schulte, D. Abel, M. Teller, G. Hirt, and J. Lohmar, J, “Modeling and exploiting the strip tension influence on surface imprinting during temper rolling of cold-rolled steel,” Advances in Industrial and Manufacturing Engineering, 3, 100045, 2021.
  • [2] B. Çolak, and N. Kurgan, “An experimental investigation into roughness transfer in skin-pass rolling of steel strips,” The International Journal of Advanced Manufacturing Technology, 96, 3321-3330, 2018.
  • [3] B. Özakın, and Kurgan, N, “Experimental investigation of roughness transfer with skin-pass rolling to high strength low alloy (HSLA) material,” Arabian Journal for Science and Engineering, 46(12), 12137-12144, 2021.
  • [4] M. A. Mekicha, M. B. De Rooij, L. Jacobs, D. T. A. Matthews, and D. J. Schipper, “Experimental validation of contact models for cold-rolling processes,” Journal of Materials Processing Technology, 275, 116371, 2020.
  • [5] E. Rodriguez-Vidal, D. T. A. Matthews, V. S. de Viteri, F. Korver, D. J. Wentink, and I. Quintana, “Surface design and texturing of strip steel using nanosecond pulsed lasers for simulated roughness transfer and paint appearance,” Journal of Materials Processing Technology, 275, 116365, 2020.
  • [6] B. Özakın, and N. Kurgan, “DC04 kalite sac malzemelere temper haddeleme ile pürüzlülük transferinde yağlayıcının etkisinin incelenmesi,” Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 2(2), 325-336, 2020.
  • [7] B. Özakın, B. Çolak, and N. Kurgan, “Effect of material thickness and reduction ratio on roughness transfer in skin-pass rolling to DC04 grade sheet materials,” Industrial Lubrication and Tribology, 73(4), 676-682, 2021.
  • [8] C. Wu, L. Zhang, P. Qu, S. Li, and Z. Jiang, “Effect of the elastic deformation of rolls on the surface texture transfer in skin-pass rolling,” International Journal of Mechanical Sciences, 198, 106358, 2021.
  • [9] A. Patel, A. Malik, F. Zhang, and R. Mathews, “Influence of work-roll grinding error and high-fidelity corrective grinding in cold sheet rolling,” The International Journal of Advanced Manufacturing Technology, 120(11), 7389-7413, 2022.
  • [10] Z. Zhang, H. Zhang, X. Liu, T. Wang, Q. Huang, and X. Liao, “Effect of roll surface topography on microstructure and mechanical properties of 304 stainless steel ultra-thin strip,” Journal of Manufacturing Processes, 108, 764-778, 2023.
  • [11] R. Matin, Y. Totik, E. E. Sukuroglu, I. Efeoglu, and T. G. Santos, “Effects of voltage on the components of surface integrity of Al2O3 ceramic coatings on AA2024 by plasma electrolytic oxidation,” Journal of Adhesion Science and Technology, 34(18), 1971-1981, 2020.
  • [12] H. I. Yurdgulu, R. Sadeler, H. Yilmaz, and B. Koc, “Corrosion fatigue behavior of AA 7020 alloy in seawater,” Materials Testing, 65(5), 743-752, 2023.
  • [13] S. S. Li, X. Yue, Q. Y. Li, H. L. Peng, B. X. Dong, T. S. Liu, H. Y. Yang, J. Fan, S. L. Shu, F. Qiu, and Q. C. Jiang, “Development and applications of aluminum alloys for aerospace industry,” Journal of Materials Research and Technology, 27, 944-983, 2023.
  • [14] O. A. Gali, M. Shafiei, J. A. Hunter, and A. R. Riahi, “The influence of work roll roughness on the surface/near-surface microstructure evolution of hot rolled aluminum–magnesium alloys,” Journal of Materials Processing Technology, 237, 331-341, 2016.
  • [15] J. G. Lenard, “The effect of roll roughness on the rolling parameters during cold rolling of an aluminum alloy,” Journal of Materials Processing Technology, 152(2), 144-153, 2004.
  • [16] M. F. Frolish, M. Krzyzanowski, W. M. Rainforth, and J. H. Beynon, “Oxide scale behaviour on aluminium and steel under hot working conditions,” Journal of Materials Processing Technology, 177(1-3), 36-40, 2006.
  • [17] J. Sun, H. Ying, and M. Lu, “Optimize aluminum's surface roughness in rolling lubrication process,” Industrial Lubrication and Tribology, 65(3), 175-180, 2013.
  • [18] Y. R. Jeng, J. T. Lee, Y. J. Hwu, L. C. Liu, and C. Y. Lu, “Effects of operation parameters of cold rolling on surface finish of aluminum,” Tribology International, 148, 106321, 2020.
  • [19] E. A. Hussein, J. Gattmah, A. N. Jaseem, and S. K. Shibab “Optimization of rolling parameters for enhancing the surface integrity of aluminum alloy,” Journal of Harbin Institute of Technology (New Series), 30(6), 70-82, 2023.
  • [20] L. Ma, J. Lian, X. Ma, S. Bai, L. Ma, and J. Zhao, “A study on the tribological behavior of water-based nanolubricant during corrugated rolling of copper plates,” The International Journal of Advanced Manufacturing Technology, 129(3), 1513-1526, 2023.
  • [21] P. Warneke, A. Bohlen, and T. Seefeld, “Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching,” Journal of Laser Applications, 36(1), 012011, 2024.
  • [22] N.M. André, S. M. Goushegir, J. F. Dos Santos, L. B. Canto, and S. T. Amancio-Filho, “Friction Spot Joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly (phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms,” Composites Part B: Engineering, 94, 197-208, 2016.
  • [23] S. Akpinar, M. D. Aydin, and A. Özel, “A study on 3-D stress distributions in the bi-adhesively bonded T-joints,” Applied Mathematical Modelling, 37(24), 10220-10230, 2013.
  • [24] K. Gültekin, and Y. Korkmaz, “AA2024-T3 alüminyum alaşımlarına uygulanan farklı yüzey hazırlama ve pürüzlülük işlemlerinin yapıştırma bağlantılarına etkisi,” Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1269-1281, 2021.
  • [25] H. Kijima, “Influence of roll radius on roughness transfer in skin-pass rolling of steel strip,” Journal of Materials Processing Technology, 214(5): 1111-1119, 2014.
  • [26] C. Wu, L. Zhang, P. Qu, S. Li, and Z. Jiang, “A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips,” Wear, 426, 1246-1264, 2019.
  • [27] D. Xu, Q. Yang, X. Wang, H. He, Y. Sun, and W. Li, “An experimental investigation of steel surface topography transfer by cold rolling,” Micromachines, 11(10), 916, 2020.
  • [28] B. Özakin, “Experimental investigation of the effect of skin-pass rolling reduction ratio on corrosion behaviors of AISI 304 stainless steel sheet materials,” Surface Topography: Metrology and Properties, 11(2), 025004, 2023.
  • [29] B. Çolak, Z. Ahmed, B. Özakın, and N. Kurgan, “An experimental investigation into roughness transfer in asymmetrical rolling of steel strips,” Karadeniz Fen Bilimleri Dergisi, 13(3), 1070-1089,2023.
  • [30] B. Özakın, and E. Yılmaz, “Sac malzemelerin boyanabilme kabiliyetlerine temper haddeleme ezme miktarının etkisi,” Karadeniz Fen Bilimleri Dergisi, 13(2), 517-530, 2023.

AA2024-T3 Alüminyum Alaşımlarının Soğuk Haddeleme İşleminde Pürüzlülük Transfer Davranışının Deneysel İncelenmesi

Year 2025, Volume: 16 Issue: 1, 139 - 146
https://doi.org/10.24012/dumf.1532363

Abstract

Sac malzemeler ideal düzeyde boyanma ve şekillendirilebilme amacıyla pürüzlü olarak imal edilirler. Bu işlem soğuk haddelemenin son aşamasında pürüzlü merdaneler kullanılarak gerçekleştirilir. Pürüzlü merdaneler arasından geçen sac malzeme nihai olarak pürüzlenir ve kullanıma sunulur. Alüminyum alaşımları hafiflik, yüksek korozyon direnci ve yüksek mekanik özellikler gibi üstün özellikler sergilemesinden ötürü birçok endüstride kullanım görmektedir. Alüminyum sac malzemelerin soğuk haddeleme ile pürüzlendirmede yüzey pürüzlülük davranışlarının belirlenmesi amacıyla bu çalışma yürütülmüştür. Bu kapsamda AA2024-T3 alüminyum alaşımları farklı redüksiyon oranlarında (%1, %5, %10, %20) pürüzlü merdaneler kullanılarak soğuk haddeleme işlemine tabi tutulmuştur. Testler esnasında haddeleme kuvvetleri test düzeneğinden okunmuş ve farklı redüksiyon oranlarında haddeleme ile pürüzlendirilen yüzeylerin Ra, Rv ve Rp pürüzlülük parametreleri ile pürüzlülük profilleri elde edilmiştir. Redüksiyon oranı arttıkça haddeleme kuvveti ve pürüzlülük transfer oranının arttığı belirlenmiştir. %1 redüksiyon oranında yapılan soğuk haddeleme ile pürüzlülük transferinde pürüzlülük parametreleri, pürüzlülük dağılımı ve yüzey görüntüleri birlikte değerlendirildiğinde sac malzeme yüzeylerinde homojen pürüzlülük dağılımı söz konusu iken %5 ve artan redüksiyon oranlarında ise homojen pürüzlülük dağılımının giderek bozulduğu sonucuna varılmıştır.

References

  • [1] X. Li, C. Schulte, D. Abel, M. Teller, G. Hirt, and J. Lohmar, J, “Modeling and exploiting the strip tension influence on surface imprinting during temper rolling of cold-rolled steel,” Advances in Industrial and Manufacturing Engineering, 3, 100045, 2021.
  • [2] B. Çolak, and N. Kurgan, “An experimental investigation into roughness transfer in skin-pass rolling of steel strips,” The International Journal of Advanced Manufacturing Technology, 96, 3321-3330, 2018.
  • [3] B. Özakın, and Kurgan, N, “Experimental investigation of roughness transfer with skin-pass rolling to high strength low alloy (HSLA) material,” Arabian Journal for Science and Engineering, 46(12), 12137-12144, 2021.
  • [4] M. A. Mekicha, M. B. De Rooij, L. Jacobs, D. T. A. Matthews, and D. J. Schipper, “Experimental validation of contact models for cold-rolling processes,” Journal of Materials Processing Technology, 275, 116371, 2020.
  • [5] E. Rodriguez-Vidal, D. T. A. Matthews, V. S. de Viteri, F. Korver, D. J. Wentink, and I. Quintana, “Surface design and texturing of strip steel using nanosecond pulsed lasers for simulated roughness transfer and paint appearance,” Journal of Materials Processing Technology, 275, 116365, 2020.
  • [6] B. Özakın, and N. Kurgan, “DC04 kalite sac malzemelere temper haddeleme ile pürüzlülük transferinde yağlayıcının etkisinin incelenmesi,” Uluslararası Doğu Anadolu Fen Mühendislik ve Tasarım Dergisi, 2(2), 325-336, 2020.
  • [7] B. Özakın, B. Çolak, and N. Kurgan, “Effect of material thickness and reduction ratio on roughness transfer in skin-pass rolling to DC04 grade sheet materials,” Industrial Lubrication and Tribology, 73(4), 676-682, 2021.
  • [8] C. Wu, L. Zhang, P. Qu, S. Li, and Z. Jiang, “Effect of the elastic deformation of rolls on the surface texture transfer in skin-pass rolling,” International Journal of Mechanical Sciences, 198, 106358, 2021.
  • [9] A. Patel, A. Malik, F. Zhang, and R. Mathews, “Influence of work-roll grinding error and high-fidelity corrective grinding in cold sheet rolling,” The International Journal of Advanced Manufacturing Technology, 120(11), 7389-7413, 2022.
  • [10] Z. Zhang, H. Zhang, X. Liu, T. Wang, Q. Huang, and X. Liao, “Effect of roll surface topography on microstructure and mechanical properties of 304 stainless steel ultra-thin strip,” Journal of Manufacturing Processes, 108, 764-778, 2023.
  • [11] R. Matin, Y. Totik, E. E. Sukuroglu, I. Efeoglu, and T. G. Santos, “Effects of voltage on the components of surface integrity of Al2O3 ceramic coatings on AA2024 by plasma electrolytic oxidation,” Journal of Adhesion Science and Technology, 34(18), 1971-1981, 2020.
  • [12] H. I. Yurdgulu, R. Sadeler, H. Yilmaz, and B. Koc, “Corrosion fatigue behavior of AA 7020 alloy in seawater,” Materials Testing, 65(5), 743-752, 2023.
  • [13] S. S. Li, X. Yue, Q. Y. Li, H. L. Peng, B. X. Dong, T. S. Liu, H. Y. Yang, J. Fan, S. L. Shu, F. Qiu, and Q. C. Jiang, “Development and applications of aluminum alloys for aerospace industry,” Journal of Materials Research and Technology, 27, 944-983, 2023.
  • [14] O. A. Gali, M. Shafiei, J. A. Hunter, and A. R. Riahi, “The influence of work roll roughness on the surface/near-surface microstructure evolution of hot rolled aluminum–magnesium alloys,” Journal of Materials Processing Technology, 237, 331-341, 2016.
  • [15] J. G. Lenard, “The effect of roll roughness on the rolling parameters during cold rolling of an aluminum alloy,” Journal of Materials Processing Technology, 152(2), 144-153, 2004.
  • [16] M. F. Frolish, M. Krzyzanowski, W. M. Rainforth, and J. H. Beynon, “Oxide scale behaviour on aluminium and steel under hot working conditions,” Journal of Materials Processing Technology, 177(1-3), 36-40, 2006.
  • [17] J. Sun, H. Ying, and M. Lu, “Optimize aluminum's surface roughness in rolling lubrication process,” Industrial Lubrication and Tribology, 65(3), 175-180, 2013.
  • [18] Y. R. Jeng, J. T. Lee, Y. J. Hwu, L. C. Liu, and C. Y. Lu, “Effects of operation parameters of cold rolling on surface finish of aluminum,” Tribology International, 148, 106321, 2020.
  • [19] E. A. Hussein, J. Gattmah, A. N. Jaseem, and S. K. Shibab “Optimization of rolling parameters for enhancing the surface integrity of aluminum alloy,” Journal of Harbin Institute of Technology (New Series), 30(6), 70-82, 2023.
  • [20] L. Ma, J. Lian, X. Ma, S. Bai, L. Ma, and J. Zhao, “A study on the tribological behavior of water-based nanolubricant during corrugated rolling of copper plates,” The International Journal of Advanced Manufacturing Technology, 129(3), 1513-1526, 2023.
  • [21] P. Warneke, A. Bohlen, and T. Seefeld, “Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching,” Journal of Laser Applications, 36(1), 012011, 2024.
  • [22] N.M. André, S. M. Goushegir, J. F. Dos Santos, L. B. Canto, and S. T. Amancio-Filho, “Friction Spot Joining of aluminum alloy 2024-T3 and carbon-fiber-reinforced poly (phenylene sulfide) laminate with additional PPS film interlayer: Microstructure, mechanical strength and failure mechanisms,” Composites Part B: Engineering, 94, 197-208, 2016.
  • [23] S. Akpinar, M. D. Aydin, and A. Özel, “A study on 3-D stress distributions in the bi-adhesively bonded T-joints,” Applied Mathematical Modelling, 37(24), 10220-10230, 2013.
  • [24] K. Gültekin, and Y. Korkmaz, “AA2024-T3 alüminyum alaşımlarına uygulanan farklı yüzey hazırlama ve pürüzlülük işlemlerinin yapıştırma bağlantılarına etkisi,” Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1269-1281, 2021.
  • [25] H. Kijima, “Influence of roll radius on roughness transfer in skin-pass rolling of steel strip,” Journal of Materials Processing Technology, 214(5): 1111-1119, 2014.
  • [26] C. Wu, L. Zhang, P. Qu, S. Li, and Z. Jiang, “A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips,” Wear, 426, 1246-1264, 2019.
  • [27] D. Xu, Q. Yang, X. Wang, H. He, Y. Sun, and W. Li, “An experimental investigation of steel surface topography transfer by cold rolling,” Micromachines, 11(10), 916, 2020.
  • [28] B. Özakin, “Experimental investigation of the effect of skin-pass rolling reduction ratio on corrosion behaviors of AISI 304 stainless steel sheet materials,” Surface Topography: Metrology and Properties, 11(2), 025004, 2023.
  • [29] B. Çolak, Z. Ahmed, B. Özakın, and N. Kurgan, “An experimental investigation into roughness transfer in asymmetrical rolling of steel strips,” Karadeniz Fen Bilimleri Dergisi, 13(3), 1070-1089,2023.
  • [30] B. Özakın, and E. Yılmaz, “Sac malzemelerin boyanabilme kabiliyetlerine temper haddeleme ezme miktarının etkisi,” Karadeniz Fen Bilimleri Dergisi, 13(2), 517-530, 2023.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Material Design and Behaviors, Mechanical Engineering (Other)
Journal Section Articles
Authors

Batuhan Özakın 0000-0003-1754-949X

Kürşat Gültekin 0000-0002-6790-6822

Early Pub Date March 26, 2025
Publication Date
Submission Date August 12, 2024
Acceptance Date February 6, 2025
Published in Issue Year 2025 Volume: 16 Issue: 1

Cite

IEEE B. Özakın and K. Gültekin, “AA2024-T3 Alüminyum Alaşımlarının Soğuk Haddeleme İşleminde Pürüzlülük Transfer Davranışının Deneysel İncelenmesi”, DUJE, vol. 16, no. 1, pp. 139–146, 2025, doi: 10.24012/dumf.1532363.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456