Pseudospektral Chebyshev yöntemi ile fonksiyonel dereceli çubukların zorlanmış titreşim analizi
Year 2025,
Volume: 16 Issue: 1, 147 - 155
Özlem Cerit
,
Durmuş Yarımpabuç
Abstract
Eksenel yönde değişken kesit alanına sahip fonksiyonel olarak dereceli çubuğun zorlanmış titreşim analizi ele alınmıştır. Elastik modül ve yoğunluk gibi malzeme özelliklerinin eksenel yönde derecelendirildiği varsayılmıştır. Bu koşullar, geleneksel analitik yöntemlerle çözülmesi zor olan değişken katsayılı kısmi diferansiyel denklemle sonuçlanır. Laplace dönüşümü altında, kısmi diferansiyel denklem eksenel yönde zamandan bağımsız bir sınır değer problemine dönüştürülmüş ve pseudospektral Chebyshev yöntemi ile çözülmüştür. Modifiye edilmiş ters Durbin yöntemi kullanılarak fiziksel uzaydaki yer değiştirmeler elde edilmiştir. Birleştirilmiş sayısal yöntemle elde edilen sonuçlar literatürle doğrulanmıştır. Rastgele seçilen malzeme karışımının yer değiştirme dağılımları üzerindeki etkileri tartışılmıştır.
Project Number
OKÜ BAP-2023-PT2-021
References
- [1] M. Eisenberger, “Exact longitudinal vibration frequencies of a variable cross-section rod,” Appl. Acoust., vol. 34, pp. 123-130, 1991.
- [2] S. Abrate, “Vibration of non-uniform rods and beams,” Journal of Sound and Vibration, vol. 185, pp. 703-716, 1995.
- [3] B. M. Kumar, R. I. Sujith, “Exact solutions for the longitudinal vibration of non-uniform rods,” Journal of Sound and Vibration, vol. 207, pp. 721-729, 1997.
- [4] Gürgöze M., “On the eigenfrequencies of longitudinally vibrating rods carrying a tip mass and spring–mass in-span,” Journal of Sound and Vibration., vol. 216, no 2, pp. 295-308, 1998.
- [5] Q. S. Li., “Exact solutions for free longitudinal vibrations of non-uniform rods,” Journal of Sound and Vibration., vol. 234, pp. 1-19, 2000.
- [6] Q. S. Li., “Exact solutions for free longitudinal vibration of stepped non-uniform rods,” Appl. Acoust., vol. 60, pp. 13-28, 2000.
- [7] Li, Q.S, Wu, J. R., and Xu, J., “Longitudinal vibration of multi-step non-uniform structures with lumped masses and spring supports,” Appl. Acoust., vol. 63, pp. 333-350, 2002.
- [8] Ö. Turhan, “On the eigencharacteristics of longitudinally vibratıng rods with a cross-section discontinuity,” Journal of Sound and Vibration, vol. 248, no 1, pp. 167-177, 2001.
- [9] M. Gürgöze, H. Erol, “On the eigencharacteristics of multi-step rods carrying a tip mass subjected to non-homogeneous external viscous damping,” Journal of Sound and Vibration, vol. 267, pp. 355-365, 2003.
- [10] A. Raj ve R.I. Sujith, “Closed-form solutions for the free longitudinal vibration of inhomogeneous rods”, Journal of Sound and Vibration, vol. 283, pp. 1015-1030, 2005.
- [11] F. Cortes, M.J. Elejabarrieta, “Longitudinal vibration of a damped rod Part I: Complex natural frequencies and mode shapes,” International Journal of Mechanical Sciences, vol. 48, no. 9, pp. 969-75, 2006.
- [12] A.M.A. Al. Kaisy, R.A. Esmaeel; M.M. Nassar, “Application of the differential quadrature method in the longitudinal vibration of non-uniform rods,” Eng. Mech., vol. 14, pp. 303-310, 2007.
- [13] A.S. Promyslova, “Longitudinal vibrations of elastic rods of variable cross-section (concentrators),” Mechanics of Solids, vol. 43, pp. 939-47, 2008.
- [14] C.G. Provatidis, “Free vibration analysis of elastic rods using global collocation.,” Arch. Apll. Mech., vol. 78, pp. 241-250, 2008.
- [15] I. Calio, ve I. Elishakoff, “Vibration tailoring of inhomogeneous rod that possesses a trigonometric fundamental mode shape,” Journal of Sound and Vibration, vol. 309, pp. 838-842, 2008.
- [16] B. Yardimoglu, Diccussion on “Exact solutions for the longitudinal vibration of non-uniform rods,” Journal of Sound and Vibration, vol. 329, pp. 4107, 2010.
- [17] Bahrami, A. Comments on “Exact solutions for the longitudinal vibration of non-uniform rods Journal of Sound and Vibration, vol. 442, pp. 843-844, 2019.
- [18] S. Guo, S. Yang, “Longitudinal vibrations of arbitrary non-uniform rods.” Acta Mech. Solida Sin., vol. 28, pp. 187-199, 2015.
- [19] K. Çelebi, İ. Keleş, N. Tütüncü, “Exact solutions for forced vibration of non-uniform rods by Laplace transformation,” Gazi University Journal of Science., vol. 24, no 2, pp. 343-353, 2011.
- [20] H. Askari, E. Esmailzadeh,ve D. Younesian, “Nonlinear Longitudinal Vibration Solutions of an Elastic Rod,” Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 4B: Dynamics, Vibration and Control. San Diego, California, USA. November pp.15–21, 2013.
- [21] B.S. Roody, A.R. Fotuhi, M.M. Jalili, “Nonlinear longitudinal forced vibration of a rod undergoing finite strain,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science vol. 232, no. 12, pp. 2229-2243, 2018.
- [22] K. Celebi, D. Yarimpabuc, T. Baran, “Forced vibration analysis of inhomogeneous rods with non-uniform cross-section” J. Eng. Res., vol. 6, pp. 189-202, 2018.
- [23] K. Kulterbaev, L. Baragunova, M. Shogenova, “Free Transverse Oscillations of a Continuum-Discrete Vertical Rod,” IOP Conference Series: Earth and Environmental Science, vol. 459, p. 062096, 2020.
- [24] T. A. Aslan, A. R. Noori, B. Temel, “Fonksiyonel Derecelenmiş Malzemeli Kirişlerin Sönümlü ve Sönümsüz Zorlanmış Titreşim Analizi”, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35(2), 497–510, 2020.
- [25] A. Demir, “The fundamental frequencies of longitudinally vibrating rods carrying tip mass and transversally vibrating beams carrying tip mass by using several methods,” Cumhuriyet Science Journal, vol. 42, no. 1, 209-217, 2021.
- [26] A. Babaei, “Forced vibration analysis of non-local strain gradient rod subjected to harmonic excitations,” Microsyst Technol, vol. 27, pp. 821–831, 2021.
- [27] K. Kondakci ve S.B. Coşkun, “Analysis of the Axial Vibration of Non-Uniform and Functionally Graded Rods via an Analytical-Based Numerical Approach,” Vibration , vol.6, no.4, pp.876-894, 2023.
- [28] A. Yıldırım, D. Yarımpabuç, K. Çelebi, “Transient thermal stress analysis of functionally graded annular fin with free base”, Journal of Thermal Stresses, 43(9), 1138-1149, 2020.
- [29] M. Eker, D. Yarımpabuç, K. Çelebi, "Thermal stress analysis of functionally graded solid and hollow thick-walled structures with heat generation", Engineering Computations, Vol. 38(1), 371-391, 2021.
- [30] M. Eker, D. Yarımpabuç, “Thermomechanical responses of functionally graded cylinders”, Journal of Applied Mathematics and Computational Mechanics, vol. 20(4):19-28, 2021.
- [31] A. Yıldırım, D. Yarımpabuç, V. Arikan, M. Eker, K. Celebi, “Nonlinear thermal stress analysis of functionally graded spherical pressure vessels”, International Journal of Pressure Vessels and Piping, vol. 200, 104830, 2022.
- [32] F. Durbin, “Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method,” The Computer Journal, vol. 17, pp. 371- 376, 1974.
- [33] G.V. Narayanan, “Numerical operational methods in structural Dynamics,” Minneapolis, University of Minnesota, 1979.
- [34] F.F. Calim, “Free and forced vibration of non-uniform composite beams,” Composite Structures, vol. 88, pp. 413-423, 2009.
- [35] F.F. Calim, “Free and forced vibration of non-uniform composite beams,” Composite Structures, vol. 88, pp. 413-423, 2009.
- [36] N. Eratlı, H. Argeso, F.F. Calim, B. Temel, M.H. Omurtag, “Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM,” Journal of Sound and Vibration, vol. 333, no. 16, pp. 3671-3690, 2014.
- [37] A.R. Noori, T.A. Aslan, B. Temel, “Damped transient response of in-plane and out-of-plane loaded stepped curved rods,” Journal of The Brazilian Society of Mechanical Sciences and Engineering, vol.40, no.1, 2018.
- [38] T.A. Aslan, A.R. Noori, B. Temel, “Dynamic response of viscoelastic tapered cycloidal rods,” Mechanics Research Communications, vol. 92, pp. 8-14, 2018.
Year 2025,
Volume: 16 Issue: 1, 147 - 155
Özlem Cerit
,
Durmuş Yarımpabuç
Project Number
OKÜ BAP-2023-PT2-021
References
- [1] M. Eisenberger, “Exact longitudinal vibration frequencies of a variable cross-section rod,” Appl. Acoust., vol. 34, pp. 123-130, 1991.
- [2] S. Abrate, “Vibration of non-uniform rods and beams,” Journal of Sound and Vibration, vol. 185, pp. 703-716, 1995.
- [3] B. M. Kumar, R. I. Sujith, “Exact solutions for the longitudinal vibration of non-uniform rods,” Journal of Sound and Vibration, vol. 207, pp. 721-729, 1997.
- [4] Gürgöze M., “On the eigenfrequencies of longitudinally vibrating rods carrying a tip mass and spring–mass in-span,” Journal of Sound and Vibration., vol. 216, no 2, pp. 295-308, 1998.
- [5] Q. S. Li., “Exact solutions for free longitudinal vibrations of non-uniform rods,” Journal of Sound and Vibration., vol. 234, pp. 1-19, 2000.
- [6] Q. S. Li., “Exact solutions for free longitudinal vibration of stepped non-uniform rods,” Appl. Acoust., vol. 60, pp. 13-28, 2000.
- [7] Li, Q.S, Wu, J. R., and Xu, J., “Longitudinal vibration of multi-step non-uniform structures with lumped masses and spring supports,” Appl. Acoust., vol. 63, pp. 333-350, 2002.
- [8] Ö. Turhan, “On the eigencharacteristics of longitudinally vibratıng rods with a cross-section discontinuity,” Journal of Sound and Vibration, vol. 248, no 1, pp. 167-177, 2001.
- [9] M. Gürgöze, H. Erol, “On the eigencharacteristics of multi-step rods carrying a tip mass subjected to non-homogeneous external viscous damping,” Journal of Sound and Vibration, vol. 267, pp. 355-365, 2003.
- [10] A. Raj ve R.I. Sujith, “Closed-form solutions for the free longitudinal vibration of inhomogeneous rods”, Journal of Sound and Vibration, vol. 283, pp. 1015-1030, 2005.
- [11] F. Cortes, M.J. Elejabarrieta, “Longitudinal vibration of a damped rod Part I: Complex natural frequencies and mode shapes,” International Journal of Mechanical Sciences, vol. 48, no. 9, pp. 969-75, 2006.
- [12] A.M.A. Al. Kaisy, R.A. Esmaeel; M.M. Nassar, “Application of the differential quadrature method in the longitudinal vibration of non-uniform rods,” Eng. Mech., vol. 14, pp. 303-310, 2007.
- [13] A.S. Promyslova, “Longitudinal vibrations of elastic rods of variable cross-section (concentrators),” Mechanics of Solids, vol. 43, pp. 939-47, 2008.
- [14] C.G. Provatidis, “Free vibration analysis of elastic rods using global collocation.,” Arch. Apll. Mech., vol. 78, pp. 241-250, 2008.
- [15] I. Calio, ve I. Elishakoff, “Vibration tailoring of inhomogeneous rod that possesses a trigonometric fundamental mode shape,” Journal of Sound and Vibration, vol. 309, pp. 838-842, 2008.
- [16] B. Yardimoglu, Diccussion on “Exact solutions for the longitudinal vibration of non-uniform rods,” Journal of Sound and Vibration, vol. 329, pp. 4107, 2010.
- [17] Bahrami, A. Comments on “Exact solutions for the longitudinal vibration of non-uniform rods Journal of Sound and Vibration, vol. 442, pp. 843-844, 2019.
- [18] S. Guo, S. Yang, “Longitudinal vibrations of arbitrary non-uniform rods.” Acta Mech. Solida Sin., vol. 28, pp. 187-199, 2015.
- [19] K. Çelebi, İ. Keleş, N. Tütüncü, “Exact solutions for forced vibration of non-uniform rods by Laplace transformation,” Gazi University Journal of Science., vol. 24, no 2, pp. 343-353, 2011.
- [20] H. Askari, E. Esmailzadeh,ve D. Younesian, “Nonlinear Longitudinal Vibration Solutions of an Elastic Rod,” Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 4B: Dynamics, Vibration and Control. San Diego, California, USA. November pp.15–21, 2013.
- [21] B.S. Roody, A.R. Fotuhi, M.M. Jalili, “Nonlinear longitudinal forced vibration of a rod undergoing finite strain,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science vol. 232, no. 12, pp. 2229-2243, 2018.
- [22] K. Celebi, D. Yarimpabuc, T. Baran, “Forced vibration analysis of inhomogeneous rods with non-uniform cross-section” J. Eng. Res., vol. 6, pp. 189-202, 2018.
- [23] K. Kulterbaev, L. Baragunova, M. Shogenova, “Free Transverse Oscillations of a Continuum-Discrete Vertical Rod,” IOP Conference Series: Earth and Environmental Science, vol. 459, p. 062096, 2020.
- [24] T. A. Aslan, A. R. Noori, B. Temel, “Fonksiyonel Derecelenmiş Malzemeli Kirişlerin Sönümlü ve Sönümsüz Zorlanmış Titreşim Analizi”, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 35(2), 497–510, 2020.
- [25] A. Demir, “The fundamental frequencies of longitudinally vibrating rods carrying tip mass and transversally vibrating beams carrying tip mass by using several methods,” Cumhuriyet Science Journal, vol. 42, no. 1, 209-217, 2021.
- [26] A. Babaei, “Forced vibration analysis of non-local strain gradient rod subjected to harmonic excitations,” Microsyst Technol, vol. 27, pp. 821–831, 2021.
- [27] K. Kondakci ve S.B. Coşkun, “Analysis of the Axial Vibration of Non-Uniform and Functionally Graded Rods via an Analytical-Based Numerical Approach,” Vibration , vol.6, no.4, pp.876-894, 2023.
- [28] A. Yıldırım, D. Yarımpabuç, K. Çelebi, “Transient thermal stress analysis of functionally graded annular fin with free base”, Journal of Thermal Stresses, 43(9), 1138-1149, 2020.
- [29] M. Eker, D. Yarımpabuç, K. Çelebi, "Thermal stress analysis of functionally graded solid and hollow thick-walled structures with heat generation", Engineering Computations, Vol. 38(1), 371-391, 2021.
- [30] M. Eker, D. Yarımpabuç, “Thermomechanical responses of functionally graded cylinders”, Journal of Applied Mathematics and Computational Mechanics, vol. 20(4):19-28, 2021.
- [31] A. Yıldırım, D. Yarımpabuç, V. Arikan, M. Eker, K. Celebi, “Nonlinear thermal stress analysis of functionally graded spherical pressure vessels”, International Journal of Pressure Vessels and Piping, vol. 200, 104830, 2022.
- [32] F. Durbin, “Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method,” The Computer Journal, vol. 17, pp. 371- 376, 1974.
- [33] G.V. Narayanan, “Numerical operational methods in structural Dynamics,” Minneapolis, University of Minnesota, 1979.
- [34] F.F. Calim, “Free and forced vibration of non-uniform composite beams,” Composite Structures, vol. 88, pp. 413-423, 2009.
- [35] F.F. Calim, “Free and forced vibration of non-uniform composite beams,” Composite Structures, vol. 88, pp. 413-423, 2009.
- [36] N. Eratlı, H. Argeso, F.F. Calim, B. Temel, M.H. Omurtag, “Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM,” Journal of Sound and Vibration, vol. 333, no. 16, pp. 3671-3690, 2014.
- [37] A.R. Noori, T.A. Aslan, B. Temel, “Damped transient response of in-plane and out-of-plane loaded stepped curved rods,” Journal of The Brazilian Society of Mechanical Sciences and Engineering, vol.40, no.1, 2018.
- [38] T.A. Aslan, A.R. Noori, B. Temel, “Dynamic response of viscoelastic tapered cycloidal rods,” Mechanics Research Communications, vol. 92, pp. 8-14, 2018.