Research Article
BibTex RIS Cite

A better way to detect sybil attacks in vehiuclar ad hoc networks

Year 2025, Volume: 16 Issue: 1, 81 - 87
https://doi.org/10.24012/dumf.1578650

Abstract

Sybil attacks, enabled by the anonymous nature of peer-to-peer broadcast communication in vehicular private networks (VANETs), pose a serious security threat. These attacks can significantly disrupt traffic flow, reduce efficiency, and potentially endanger traffic safety. Detecting Sybil attacks in VANETs is particularly challenging due to the dynamic network topology, real-time constraints, and decentralized nature of these networks. This paper proposes a novel Sybil attack detection method for VANETs, leveraging deep learning analysis of received signal strength indicator (RSSI) time series. The proposed system is designed to deliver effective results, even in brief interactions. Experimental results demonstrate the efficacy of our LSTM-based and CNN-based approaches, achieving 93.45% and 94.28% sensitivity in detecting attack messages, respectively.

References

  • [1] B. Hammi, Y. M. Idir, S. Zeadally, R. Khatoun and J. Nebhen, "Is it Really Easy to Detect Sybil Attacks in C-ITS Environments: A Position Paper," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18273-18287, Oct. 2022, doi: 10.1109/TITS.2022.3165513.
  • [2] M. T. Garip, P. H. Kim, P. Reiher and M. Gerla, "INTERLOC: An interference-aware RSSI-based localization and sybil attack detection mechanism for vehicular ad hoc networks," 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 2017, pp. 1-6, doi: 10.1109/CCNC.2017.8013424.
  • [3] Y. Yao et al., "Voiceprint: A Novel Sybil Attack Detection Method Based on RSSI for VANETs," 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Denver, CO, USA, 2017, pp. 591-602, doi: 10.1109/DSN.2017.10.
  • [4] Y. Yao, B. Xiao, G. Yang, Y. Hu, L. Wang and X. Zhou, "Power Control Identification: A Novel Sybil Attack Detection Scheme in VANETs Using RSSI," in IEEE Journal on Selected Areas in Communications, vol. 37, no. 11, pp. 2588-2602, Nov. 2019, doi: 10.1109/JSAC.2019.2933888.
  • [5] S. Rakhi and K. R. Shobha, "LCSS Based Sybil Attack Detection and Avoidance in Clustered Vehicular Networks," in IEEE Access, vol. 11, pp. 75179-75190, 2023, doi: 10.1109/ACCESS.2023.3294469.
  • [6] J. Kamel, M. R. Ansari, J. Petit, A. Kaiser, I. B. Jemaa and P. Urien, "Simulation Framework for Misbehavior Detection in Vehicular Networks," in IEEE Transactions on Vehicular Technology, vol. 69, no. 6, pp. 6631-6643, June 2020, doi: 10.1109/TVT.2020.2984878.
  • [7] E. Kristianto, P. Lin, R. Hwang, “Misbehavior detection system with semi-supervised federated learning,” in Vehicular Communications, vol. 41, 2023, doi: 10.1016/j.vehcom.2023.100597.
  • [8] M. Baza et al., "Detecting Sybil Attacks Using Proofs of Work and Location in VANETs," in IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 1, pp. 39-53, 1 Jan.-Feb. 2022, doi: 10.1109/TDSC.2020.2993769.
  • [9] F. Boeira, M. Asplund, and M. P. Barcellos, “Vouch: A Secure Proof-of-Location Scheme for VANETs,” in Proc. MSWIM '18, Montreal, Canada, 2018, pp. 241-248.
  • [10] Y. Yao et al., "Multi-Channel Based Sybil Attack Detection in Vehicular Ad Hoc Networks Using RSSI," in IEEE Transactions on Mobile Computing, vol. 18, no. 2, pp. 362-375, 1 Feb. 2019, doi: 10.1109/TMC.2018.2833849.
  • [11] B. Yu, C. Xu, B. Xiao, “Detecting Sybil attacks in VANETs,” in Journal of Parallel and Distributed Computing, vol. 73, no. 6, 2013, doi : 10.1016/j.jpdc.2013.02.001.
  • [12] S. Ercan, M. Ayaida and N. Messai, "New Features for Position Falsification Detection in VANETs using Machine Learning," ICC 2021 - IEEE International Conference on Communications, Montreal, QC, Canada, 2021, pp. 1-6, doi: 10.1109/ICC42927.2021.9500411.
  • [13] R. W. Heijden, T. Lukaseder, and F. Kargl, “Veremi : A dataset for comparable evaluation of misbehavior detection in VANETs,” in Proc. SecureComm, Singapore, Singapore, 2018, pp. 318-337.
  • [14] C. Sommer, R. German and F. Dressler, "Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis," in IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 3-15, Jan. 2011, doi: 10.1109/TMC.2010.133.
  • [15] J. Kamel, M. Wolf, R. W. van der Hei, A. Kaiser, P. Urien and F. Kargl, "VeReMi Extension: A Dataset for Comparable Evaluation of Misbehavior Detection in VANETs," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149132.
  • [16] J. Kamel, A. Kaiser, I. ben Jemaa, P. Cincilla and P. Urien, "CaTch: A Confidence Range Tolerant Misbehavior Detection Approach," 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019, pp. 1-8, doi: 10.1109/WCNC.2019.8885740.
  • [17] Intelligent Transport Systems; Vehicular Communications; Basic Set of Applications; Part2 : Specification of Cooperative Awareness Basic Service, ETSI EN 302 637-2, 2014
  • [18] SAE Surface Vehicle Standard, J2735, 2020
  • [19] J. Kamel, I. B. Jemaa, A. Kaiser, L. Cantat and P. Urien, "Misbehavior Detection in C-ITS: A comparative approach of local detection mechanisms," 2019 IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, USA, 2019, pp. 1-8, doi: 10.1109/VNC48660.2019.9062831.
  • [20] German Aerospace Center (DLR) and others. Sumo user documentation. https://sumo.dlr.de/docs/, 2023. [Online; accessed 20-October-2024]
  • [21] Christoph Sommer. The open source vehicular network simulation framework. https://veins.car2x.org/, 2021. [Online; accessed 20-October-2024]
  • [22] Istanbul vanet sybil attack dataset. https://github.com/VANET-IstanbulSybil-Attack-Dataset/dataset-src, 2024. [Online; accessed 11-October2023]

Tasarsız araç ağlarında sybil saldırılarının Tespiti için daha iyi bir yol

Year 2025, Volume: 16 Issue: 1, 81 - 87
https://doi.org/10.24012/dumf.1578650

Abstract

Tasarsız araç ağlardaki (VANET) eşler arası yayın iletişiminin anonim doğası gereği ortaya gerçekleştirilebilen sybil saldırıları ciddi bir güvenlik tehdidi oluşturur.
Bu saldırılar trafik akışını önemli ölçüde bozabilir, verimliliği azaltabilir ve potansiyel olarak trafik güvenliğini tehlikeye atabilir. VANET'lerde sybil saldırılarını tespit etmek,
bu ağların dinamik ağ topolojisi, uygulamaların gerçek zamanlı kısıtlamaları ve merkezi olmayan ağ yapısı nedeniyle özellikle zordur. Bu makale VANET'ler için alınan sinyal gücü göstergesi (RSSI) ile oluşturulan zaman serilerinin
derin öğrenme ile analiz edilmesine dayanan yeni bir Sybil saldırısı tespit yöntemi önermektedir. Önerilen sistem, kısa etkileşimlerde bile etkili sonuçlar sunmak üzere tasarlanmıştır. Deneysel sonuçlar, LSTM tabanlı ve CNN tabanlı yaklaşımlarımızın etkinliğini göstererek saldırı mesajlarını tespit etmede sırasıyla %93,45 ve %94,28 hassasiyet elde etmiştir.

References

  • [1] B. Hammi, Y. M. Idir, S. Zeadally, R. Khatoun and J. Nebhen, "Is it Really Easy to Detect Sybil Attacks in C-ITS Environments: A Position Paper," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18273-18287, Oct. 2022, doi: 10.1109/TITS.2022.3165513.
  • [2] M. T. Garip, P. H. Kim, P. Reiher and M. Gerla, "INTERLOC: An interference-aware RSSI-based localization and sybil attack detection mechanism for vehicular ad hoc networks," 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 2017, pp. 1-6, doi: 10.1109/CCNC.2017.8013424.
  • [3] Y. Yao et al., "Voiceprint: A Novel Sybil Attack Detection Method Based on RSSI for VANETs," 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Denver, CO, USA, 2017, pp. 591-602, doi: 10.1109/DSN.2017.10.
  • [4] Y. Yao, B. Xiao, G. Yang, Y. Hu, L. Wang and X. Zhou, "Power Control Identification: A Novel Sybil Attack Detection Scheme in VANETs Using RSSI," in IEEE Journal on Selected Areas in Communications, vol. 37, no. 11, pp. 2588-2602, Nov. 2019, doi: 10.1109/JSAC.2019.2933888.
  • [5] S. Rakhi and K. R. Shobha, "LCSS Based Sybil Attack Detection and Avoidance in Clustered Vehicular Networks," in IEEE Access, vol. 11, pp. 75179-75190, 2023, doi: 10.1109/ACCESS.2023.3294469.
  • [6] J. Kamel, M. R. Ansari, J. Petit, A. Kaiser, I. B. Jemaa and P. Urien, "Simulation Framework for Misbehavior Detection in Vehicular Networks," in IEEE Transactions on Vehicular Technology, vol. 69, no. 6, pp. 6631-6643, June 2020, doi: 10.1109/TVT.2020.2984878.
  • [7] E. Kristianto, P. Lin, R. Hwang, “Misbehavior detection system with semi-supervised federated learning,” in Vehicular Communications, vol. 41, 2023, doi: 10.1016/j.vehcom.2023.100597.
  • [8] M. Baza et al., "Detecting Sybil Attacks Using Proofs of Work and Location in VANETs," in IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 1, pp. 39-53, 1 Jan.-Feb. 2022, doi: 10.1109/TDSC.2020.2993769.
  • [9] F. Boeira, M. Asplund, and M. P. Barcellos, “Vouch: A Secure Proof-of-Location Scheme for VANETs,” in Proc. MSWIM '18, Montreal, Canada, 2018, pp. 241-248.
  • [10] Y. Yao et al., "Multi-Channel Based Sybil Attack Detection in Vehicular Ad Hoc Networks Using RSSI," in IEEE Transactions on Mobile Computing, vol. 18, no. 2, pp. 362-375, 1 Feb. 2019, doi: 10.1109/TMC.2018.2833849.
  • [11] B. Yu, C. Xu, B. Xiao, “Detecting Sybil attacks in VANETs,” in Journal of Parallel and Distributed Computing, vol. 73, no. 6, 2013, doi : 10.1016/j.jpdc.2013.02.001.
  • [12] S. Ercan, M. Ayaida and N. Messai, "New Features for Position Falsification Detection in VANETs using Machine Learning," ICC 2021 - IEEE International Conference on Communications, Montreal, QC, Canada, 2021, pp. 1-6, doi: 10.1109/ICC42927.2021.9500411.
  • [13] R. W. Heijden, T. Lukaseder, and F. Kargl, “Veremi : A dataset for comparable evaluation of misbehavior detection in VANETs,” in Proc. SecureComm, Singapore, Singapore, 2018, pp. 318-337.
  • [14] C. Sommer, R. German and F. Dressler, "Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis," in IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 3-15, Jan. 2011, doi: 10.1109/TMC.2010.133.
  • [15] J. Kamel, M. Wolf, R. W. van der Hei, A. Kaiser, P. Urien and F. Kargl, "VeReMi Extension: A Dataset for Comparable Evaluation of Misbehavior Detection in VANETs," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149132.
  • [16] J. Kamel, A. Kaiser, I. ben Jemaa, P. Cincilla and P. Urien, "CaTch: A Confidence Range Tolerant Misbehavior Detection Approach," 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019, pp. 1-8, doi: 10.1109/WCNC.2019.8885740.
  • [17] Intelligent Transport Systems; Vehicular Communications; Basic Set of Applications; Part2 : Specification of Cooperative Awareness Basic Service, ETSI EN 302 637-2, 2014
  • [18] SAE Surface Vehicle Standard, J2735, 2020
  • [19] J. Kamel, I. B. Jemaa, A. Kaiser, L. Cantat and P. Urien, "Misbehavior Detection in C-ITS: A comparative approach of local detection mechanisms," 2019 IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, USA, 2019, pp. 1-8, doi: 10.1109/VNC48660.2019.9062831.
  • [20] German Aerospace Center (DLR) and others. Sumo user documentation. https://sumo.dlr.de/docs/, 2023. [Online; accessed 20-October-2024]
  • [21] Christoph Sommer. The open source vehicular network simulation framework. https://veins.car2x.org/, 2021. [Online; accessed 20-October-2024]
  • [22] Istanbul vanet sybil attack dataset. https://github.com/VANET-IstanbulSybil-Attack-Dataset/dataset-src, 2024. [Online; accessed 11-October2023]
There are 22 citations in total.

Details

Primary Language English
Subjects Deep Learning, Machine Learning (Other)
Journal Section Articles
Authors

Ziya Cihan Taysi 0000-0003-3916-7492

Early Pub Date March 26, 2025
Publication Date
Submission Date November 3, 2024
Acceptance Date January 9, 2025
Published in Issue Year 2025 Volume: 16 Issue: 1

Cite

IEEE Z. C. Taysi, “A better way to detect sybil attacks in vehiuclar ad hoc networks”, DUJE, vol. 16, no. 1, pp. 81–87, 2025, doi: 10.24012/dumf.1578650.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456