Research Article
BibTex RIS Cite

Evaluation of the potential use of Nevşehir stone powder as a portland cement substitute in self-compacting mortars

Year 2025, Volume: 16 Issue: 1, 229 - 234
https://doi.org/10.24012/dumf.1581298

Abstract

The manufacturing of Portland cement is contributing to a rise in atmospheric carbon dioxide emissions. Consequently, the utilization of natural resources and waste materials possessing pozzolanic qualities in lieu of Portland cement has become imperative. This article examines the efficacy of Nevşehir stone dust, a naturally occurring pozzolanic material, as a substitute for Portland cement in the manufacturing of self-compacting mortar. A laboratory study was performed to assess the efficacy of mortar formulated with 5%, 10%, 15%, and 20% Nevşehir stone powder as a substitute for Portland cement. Prismatic specimens of 40x40x160 mm were utilized to assess the initial mechanical properties of the self-compacting mortar. The spread widths of self-compacting mortars have been established according to the standards set by the European Federation of Specialist Construction Chemicals and Concrete Systems. Samples formulated with specified ratios of Nevşehir stone powder were submerged in water at a temperature of 23±2 ̊C for a duration of 3 days. After a duration of three days, early age flexural and compressive strength tests were performed on the samples that had concluded their curing time. The experimental analysis revealed that the highest compressive strengths were seen in the reference samples and in the combinations with a 5% substitution of cement with Nevşehir stone dust. The results obtained show that Nevşehir stone powder provides a positive effect on flexural strength but causes decreases in compressive strength.

References

  • [1] Amin, B. A. Tayeh, and I. S. Agwa, “Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete,” Journal of Cleaner Production, 273, 123073 2020, doi: 10.1016/j.jclepro.2020.123073.
  • [2] I. S. Agwa, O. M. Omar, B. A. Tayeh, and B. A. Abdelsalam, “Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete,” Construction and Building Materials, 235, 117541, 2020, doi: 10.1016/j.conbuildmat.2019.117541.
  • [3] B. A. Tayeh, M. W. Hasaniyah, A. M. Zeyad, and M. O. Yusuf, “Properties of concrete containing recycled seashells as cement partial replacement: A review,” Journal of Cleaner Production, 10, 117723, 2019, doi: 10.1016/j.jclepro.2019.117723.
  • [4] C.-S. Engineering Research Centre, “Effect of molarity in geopolymer concrete”, doi: 10.6088/ijcser.201304020011.
  • [5] B. A. Tayeh, R. Alyousef, H. Alabduljabbar, and A. Alaskar, “Recycling of rice husk waste for a sustainable concrete: A critical review”, Journal of Cleaner Production, 20, 127734, 2021, Elsevier Ltd. doi: 10.1016/j.jclepro.2021.127734.
  • [6] G. L. Golewski, “Green concrete based on quaternary binders with significant reduced of CO2 missions,” Energies (Basel), 14 (15), 2021, doi: 10.3390/en14154558.
  • [7] M. Şahin Yön and M. Karataş, “Resistance to magnesium sulphate attack of binary and ternary cementless self-compacting alkali-activated mortar,” Journal of Building Engineering, 95, 109988, 2024, doi: 10.1016/j.jobe.2024.109988.
  • [8] M. Ş. Yön, B. Yön, M. Karataş, and A. Benli, “Sustainable use of boron waste and volcanic scoria in slag-based self-compacting alkali-activated mortars: fresh, mechanical and durability properties,” Sustainable Chemistry and Pharmacy, 41, 101664, 2024, doi: 10.1016/j.scp.2024.101664.
  • [9] M. Ş. Yön, F. Arslan, M. Karatas, and A. Benli, “High-temperature and abrasion resistance of self-compacting mortars incorporating binary and ternary blends of silica fume and slag,” Construction and Building Materials, 355, 129244, 2022, doi: 10.1016/j.conbuildmat.2022.129244.
  • [10] M. Mohabbi Yadollahi and M. Dener, “Investigation of elevated temperature on compressive strength and microstructure of alkali activated slag-based cements,” European Journal of Environmental and Civil Engineering, 25(5), 924-938, 2021, doi: 10.1080/19648189.2018.1557562.
  • [11] M. Dener, M. Karatas, and M. Mohabbi, “High temperature resistance of self-compacting alkali activated slag/portland cement composite using lightweight aggregate,” Construction and Building Materials, 290, 123250, 2021, doi: 10.1016/j.conbuildmat.2021.123250.
  • [12] M. Dener, M. Karatas, and M. Mohabbi, “Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate,” Construction and Building Materials, 304, 124671, 2021, doi: 10.1016/j.conbuildmat.2021.124671.
  • [13] E. Türk, M. Karataş, and M. Dener, “Rheological, mechanical and durability properties of self-compacting mortars containing basalt powder and silica fume,” Construction and Building Materials, 356, 129229, 2022, doi: 10.1016/j.conbuildmat.2022.129229.
  • [14] A. M. Zeyad, A. H. Khan, and B. A. Tayeh, “Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers,” Journal of Materials Research and Technology, 9 (1), 806–813, 2020, doi: 10.1016/j.jmrt.2019.11.021.
  • [15] A. M. Zeyad, B. A. Tayeh, and M. O. Yusuf, “Strength and transport characteristics of volcanic pumice powder based high strength concrete,” Construction and Building Materials, 216, 314–324, 2019, doi: 10.1016/j.conbuildmat.2019.05.026.
  • [16] A. Azad, A. Saeedian, S. F. Mousavi, H. Karami, S. Farzin, and V. P. Singh, “Effect of zeolite and pumice powders on the environmental and physical characteristics of green concrete filters” Construction and Building Materials, 240, 117931, 2020, doi: 10.1016/j.conbuildmat.2019.117931.
  • [17] A. S. Alqarni, “A comprehensive review on properties of sustainable concrete using volcanic pumice powder ash as a supplementary cementitious material,” Construction and Building Materials, 323, 126533, 2022, doi: 10.1016/j.conbuildmat.2022.126533.
  • [18] K. K. Al-Zboon and J. Al-Zouby, “Effect of volcanic tuff on the characteristics of cement mortar,” European Journal of Environmental and Civil Engineering, 20 (5), 520–531, 2016, doi: 10.1080/19648189.2015.1053151.
  • [19] A. C. Arı, “Nevşehir Taşlarıyla İnşa Edilen Tarihi Yapıların Restorasyonuna Yönelik Polyester Matris ve Taş Tozu Kullanılarak Üretilen Kompozit Harçlarda Tane Boyutunun Dayanımına Etkisinin Araştırılması”, Online Journal of Art & Design, 12(2), 144-157, 2024.
  • [20] “TSEN197-1pdf”.
  • [21] M. Karatas, A. Benli, and F. Arslan, “The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures,” Construction and Building Materials, 265, 120300, 2020, doi: 10.1016/j.conbuildmat.2020.120300.
  • [22] A. Benli, M. Karatas, and H. Anil Toprak, “Mechanical characteristics of self-compacting mortars with raw and expanded vermiculite as partial cement replacement at elevated temperatures,” Construction and Building Materials, 239, 117895, 2020, doi: 10.1016/j.conbuildmat.2019.117895.
  • [23] F. Arslan, A. Benli, and M. Karatas, “Effect of high temperature on the performance of self-compacting mortars produced with calcined kaolin and metakaolin,” Construction and Building Materials, 256, 119497, 2020, doi: 10.1016/j.conbuildmat.2020.119497.
  • [24] M. Karatas, A. Benli, and H. A. Toprak, “Effect of incorporation of raw vermiculite as partial sand replacement on the properties of self-compacting mortars at elevated temperature,” Construction and Building Materials, 221, 163–176, 2019, doi: 10.1016/j.conbuildmat.2019.06.077.
  • [25] M. Karataş, A. Benli, and A. Ergin, “Influence of ground pumice powder on the mechanical properties and durability of self-compacting mortars,” Construction and Building Materials, 150, 467–479, 2017, doi: 10.1016/j.conbuildmat.2017.05.220.
  • [26] A. Benli, “Mechanical and durability properties of self-compacting mortars containing binary and ternary mixes of fly ash and silica fume,” Structural Concrete, 20 (3), 1096–1108, 2019, doi: 10.1002/suco.201800302.
  • [27] EFNARC, “EFNARC, (European Federation of Specialist Construction Chemicals and Concrete Systems), The European guidelines for selfcompacting concrete: Specification, production and use, U.K, 2002,” Magazine of Concrete Research, vol. 64, no. 5, pp. 401–409, 2002, doi: 10.1680/macr.10.00167.
  • [28] M. Ş. Yön and M. Karataş, “Evaluation of the mechanical properties and durability of self-compacting alkali-activated mortar made from boron waste and granulated blast furnace slag,” Journal of Building Engineering, 61, 105263, 2022, doi: 10.1016/j.jobe.2022.105263.
  • [29] K. Turk and S. Demirhan, “Effect of limestone powder on the rheological, mechanical and durability properties of ECC,” European Journal of Environmental and Civil Engineering, 21 (9), 1151–1170, 2017, doi: 10.1080/19648189.2016.1150902.
  • [30] M. Sarıdemir and S. Çelikten, “Investigation of fire and chemical effects on the properties of alkali-activated lightweight concretes produced with basaltic pumice aggregate,” Construction and Building Materials, 260, 119969, 2020, doi: 10.1016/j.conbuildmat.2020.119969.
  • [31] A. ASTM C348, “Flexural strength of hydraulic-cement mortars,” American Society for Testing and Material, vol. 04, pp. 1–6, 2002.
  • [32] ASTM C349, “Standard test method for compressive strength of hydraulic-cement mortars (Using portions of prisms broken in flexure),” ASTM International, pp. 1–6, 2002.
  • [33] S. Saraç, M. Karatas, and A. Benli, “The effect of dunite powder and silica fume on the viscosity, physico-mechanical properties and sulphate resistance of self-compacting mortars,” Construction and Building Materials, 375, 130970, 2023, doi: 10.1016/j.conbuildmat.2023.130970.

Nevşehir taşı tozunun kendiliğinden yerleşen harçlarda portland çimentosu ikamesi olarak kullanım potansiyelinin değerlendirilmesi

Year 2025, Volume: 16 Issue: 1, 229 - 234
https://doi.org/10.24012/dumf.1581298

Abstract

Portland çimentosunun üretimi atmosferdeki karbondioksit emisyonlarının artmasına neden olmaktadır. Bu nedenle, Portland çimentosu yerine puzolanik özelliklere sahip doğal kaynakların ve atıkların kullanılması zorunlu hale gelmiştir. Bu makalede, kendiliğinden yerleşen harç yapımında Portland çimentosunun yerine kullanılabilecek doğal olarak oluşan puzolanik bir malzeme olan Nevşehir taşı tozunun etkinliği incelenmiştir. Portland çimentosu yerine %5, %10, %15 ve %20 oranlarında Nevşehir taşı tozu ilave edilerek hazırlanan harcın performansının değerlendirilmesi amacıyla bir laboratuvar çalışması yapılmıştır. Kendiliğinden yerleşen harcın başlangıçtaki mekanik performansını incelemek için 40x40x160 mm boyutlarındaki prizmatik numuneler kullanılmıştır. Kendiliğinden yerleşen harçların yayılma çapları Avrupa İnşaat Kimyasalları ve Beton Sistemleri İhtisas Federasyonu standardı referans alınarak belirlenmiştir. Seçilen oranlarda Nevşehir taşı tozu ile oluşturulan numuneler, 23±2 ̊C sıcaklıktaki suya 3 gün süreyle daldırılmıştır. Kür süresi dolan numunelere 3 günün sonunda erken yaş eğilme ve basınç dayanımı testleri uygulanmıştır. Yapılan deneysel analiz sonucunda, en yüksek basınç dayanımlarının, referans numunelerinde ve çimentoyla %5 ikameli Nevşehir taşı tozuyla oluşturulan karışımlarda olduğu belirlenmiştir. Elde edilen sonuçlar, Nevşehir taşı tozunun eğilme dayanımı üzerinde olumlu bir etki sağladığını ancak basınç dayanımında düşüşlere neden olduğunu göstermektedir.

References

  • [1] Amin, B. A. Tayeh, and I. S. Agwa, “Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete,” Journal of Cleaner Production, 273, 123073 2020, doi: 10.1016/j.jclepro.2020.123073.
  • [2] I. S. Agwa, O. M. Omar, B. A. Tayeh, and B. A. Abdelsalam, “Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete,” Construction and Building Materials, 235, 117541, 2020, doi: 10.1016/j.conbuildmat.2019.117541.
  • [3] B. A. Tayeh, M. W. Hasaniyah, A. M. Zeyad, and M. O. Yusuf, “Properties of concrete containing recycled seashells as cement partial replacement: A review,” Journal of Cleaner Production, 10, 117723, 2019, doi: 10.1016/j.jclepro.2019.117723.
  • [4] C.-S. Engineering Research Centre, “Effect of molarity in geopolymer concrete”, doi: 10.6088/ijcser.201304020011.
  • [5] B. A. Tayeh, R. Alyousef, H. Alabduljabbar, and A. Alaskar, “Recycling of rice husk waste for a sustainable concrete: A critical review”, Journal of Cleaner Production, 20, 127734, 2021, Elsevier Ltd. doi: 10.1016/j.jclepro.2021.127734.
  • [6] G. L. Golewski, “Green concrete based on quaternary binders with significant reduced of CO2 missions,” Energies (Basel), 14 (15), 2021, doi: 10.3390/en14154558.
  • [7] M. Şahin Yön and M. Karataş, “Resistance to magnesium sulphate attack of binary and ternary cementless self-compacting alkali-activated mortar,” Journal of Building Engineering, 95, 109988, 2024, doi: 10.1016/j.jobe.2024.109988.
  • [8] M. Ş. Yön, B. Yön, M. Karataş, and A. Benli, “Sustainable use of boron waste and volcanic scoria in slag-based self-compacting alkali-activated mortars: fresh, mechanical and durability properties,” Sustainable Chemistry and Pharmacy, 41, 101664, 2024, doi: 10.1016/j.scp.2024.101664.
  • [9] M. Ş. Yön, F. Arslan, M. Karatas, and A. Benli, “High-temperature and abrasion resistance of self-compacting mortars incorporating binary and ternary blends of silica fume and slag,” Construction and Building Materials, 355, 129244, 2022, doi: 10.1016/j.conbuildmat.2022.129244.
  • [10] M. Mohabbi Yadollahi and M. Dener, “Investigation of elevated temperature on compressive strength and microstructure of alkali activated slag-based cements,” European Journal of Environmental and Civil Engineering, 25(5), 924-938, 2021, doi: 10.1080/19648189.2018.1557562.
  • [11] M. Dener, M. Karatas, and M. Mohabbi, “High temperature resistance of self-compacting alkali activated slag/portland cement composite using lightweight aggregate,” Construction and Building Materials, 290, 123250, 2021, doi: 10.1016/j.conbuildmat.2021.123250.
  • [12] M. Dener, M. Karatas, and M. Mohabbi, “Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate,” Construction and Building Materials, 304, 124671, 2021, doi: 10.1016/j.conbuildmat.2021.124671.
  • [13] E. Türk, M. Karataş, and M. Dener, “Rheological, mechanical and durability properties of self-compacting mortars containing basalt powder and silica fume,” Construction and Building Materials, 356, 129229, 2022, doi: 10.1016/j.conbuildmat.2022.129229.
  • [14] A. M. Zeyad, A. H. Khan, and B. A. Tayeh, “Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers,” Journal of Materials Research and Technology, 9 (1), 806–813, 2020, doi: 10.1016/j.jmrt.2019.11.021.
  • [15] A. M. Zeyad, B. A. Tayeh, and M. O. Yusuf, “Strength and transport characteristics of volcanic pumice powder based high strength concrete,” Construction and Building Materials, 216, 314–324, 2019, doi: 10.1016/j.conbuildmat.2019.05.026.
  • [16] A. Azad, A. Saeedian, S. F. Mousavi, H. Karami, S. Farzin, and V. P. Singh, “Effect of zeolite and pumice powders on the environmental and physical characteristics of green concrete filters” Construction and Building Materials, 240, 117931, 2020, doi: 10.1016/j.conbuildmat.2019.117931.
  • [17] A. S. Alqarni, “A comprehensive review on properties of sustainable concrete using volcanic pumice powder ash as a supplementary cementitious material,” Construction and Building Materials, 323, 126533, 2022, doi: 10.1016/j.conbuildmat.2022.126533.
  • [18] K. K. Al-Zboon and J. Al-Zouby, “Effect of volcanic tuff on the characteristics of cement mortar,” European Journal of Environmental and Civil Engineering, 20 (5), 520–531, 2016, doi: 10.1080/19648189.2015.1053151.
  • [19] A. C. Arı, “Nevşehir Taşlarıyla İnşa Edilen Tarihi Yapıların Restorasyonuna Yönelik Polyester Matris ve Taş Tozu Kullanılarak Üretilen Kompozit Harçlarda Tane Boyutunun Dayanımına Etkisinin Araştırılması”, Online Journal of Art & Design, 12(2), 144-157, 2024.
  • [20] “TSEN197-1pdf”.
  • [21] M. Karatas, A. Benli, and F. Arslan, “The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures,” Construction and Building Materials, 265, 120300, 2020, doi: 10.1016/j.conbuildmat.2020.120300.
  • [22] A. Benli, M. Karatas, and H. Anil Toprak, “Mechanical characteristics of self-compacting mortars with raw and expanded vermiculite as partial cement replacement at elevated temperatures,” Construction and Building Materials, 239, 117895, 2020, doi: 10.1016/j.conbuildmat.2019.117895.
  • [23] F. Arslan, A. Benli, and M. Karatas, “Effect of high temperature on the performance of self-compacting mortars produced with calcined kaolin and metakaolin,” Construction and Building Materials, 256, 119497, 2020, doi: 10.1016/j.conbuildmat.2020.119497.
  • [24] M. Karatas, A. Benli, and H. A. Toprak, “Effect of incorporation of raw vermiculite as partial sand replacement on the properties of self-compacting mortars at elevated temperature,” Construction and Building Materials, 221, 163–176, 2019, doi: 10.1016/j.conbuildmat.2019.06.077.
  • [25] M. Karataş, A. Benli, and A. Ergin, “Influence of ground pumice powder on the mechanical properties and durability of self-compacting mortars,” Construction and Building Materials, 150, 467–479, 2017, doi: 10.1016/j.conbuildmat.2017.05.220.
  • [26] A. Benli, “Mechanical and durability properties of self-compacting mortars containing binary and ternary mixes of fly ash and silica fume,” Structural Concrete, 20 (3), 1096–1108, 2019, doi: 10.1002/suco.201800302.
  • [27] EFNARC, “EFNARC, (European Federation of Specialist Construction Chemicals and Concrete Systems), The European guidelines for selfcompacting concrete: Specification, production and use, U.K, 2002,” Magazine of Concrete Research, vol. 64, no. 5, pp. 401–409, 2002, doi: 10.1680/macr.10.00167.
  • [28] M. Ş. Yön and M. Karataş, “Evaluation of the mechanical properties and durability of self-compacting alkali-activated mortar made from boron waste and granulated blast furnace slag,” Journal of Building Engineering, 61, 105263, 2022, doi: 10.1016/j.jobe.2022.105263.
  • [29] K. Turk and S. Demirhan, “Effect of limestone powder on the rheological, mechanical and durability properties of ECC,” European Journal of Environmental and Civil Engineering, 21 (9), 1151–1170, 2017, doi: 10.1080/19648189.2016.1150902.
  • [30] M. Sarıdemir and S. Çelikten, “Investigation of fire and chemical effects on the properties of alkali-activated lightweight concretes produced with basaltic pumice aggregate,” Construction and Building Materials, 260, 119969, 2020, doi: 10.1016/j.conbuildmat.2020.119969.
  • [31] A. ASTM C348, “Flexural strength of hydraulic-cement mortars,” American Society for Testing and Material, vol. 04, pp. 1–6, 2002.
  • [32] ASTM C349, “Standard test method for compressive strength of hydraulic-cement mortars (Using portions of prisms broken in flexure),” ASTM International, pp. 1–6, 2002.
  • [33] S. Saraç, M. Karatas, and A. Benli, “The effect of dunite powder and silica fume on the viscosity, physico-mechanical properties and sulphate resistance of self-compacting mortars,” Construction and Building Materials, 375, 130970, 2023, doi: 10.1016/j.conbuildmat.2023.130970.
There are 33 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Articles
Authors

Mustafa Demir 0009-0007-6238-4547

Merve Şahin Yön 0000-0003-2954-0003

Mehmet Karataş 0000-0002-3705-8463

Early Pub Date March 26, 2025
Publication Date
Submission Date November 8, 2024
Acceptance Date January 20, 2025
Published in Issue Year 2025 Volume: 16 Issue: 1

Cite

IEEE M. Demir, M. Şahin Yön, and M. Karataş, “Evaluation of the potential use of Nevşehir stone powder as a portland cement substitute in self-compacting mortars”, DUJE, vol. 16, no. 1, pp. 229–234, 2025, doi: 10.24012/dumf.1581298.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456