Research Article
BibTex RIS Cite

Hibrit SiC-C Takviyeli Epoksi Kompozitlerin Çekme ve Aşınma Davranışı

Year 2025, Volume: 16 Issue: 3, 763 - 770
https://doi.org/10.24012/dumf.1753416

Abstract

Bu çalışmada, SiC (silisyum karbür) ve C (karbon) ile takviye edilmiş epoksi kompozitlerin aşınma ve çekme davranışları incelenmiştir. SiC ve C takviye oranlarının ve yük parametrelerinin aşınma performansı üzerindeki etkileri sistematik bir şekilde değerlendirilmiştir. En yüksek çekme yükü ve deformasyon değerleri, katkısız (saf) epoksi numunelerde gözlemlenmiştir. SiC ve C parçacıklarının eklenmesi, hibrit kompozitlerin çekme yükü üzerinde olumsuz etki yaratmıştır. SiC oranı sabit tutulup C oranı %3’ten %6’ya çıkarıldığında, çekme yükü 2438 N’den 2491 N’ye yükselmiştir. Buna karşılık, C oranı sabit tutulup SiC oranı %3’ten %6’ya çıkarıldığında, çekme yükü 2053 N’den 2409 N’ye yükselmiştir. Aşınma testleri iki farklı yük altında (3N ve 7N) gerçekleştirilmiştir. En düşük sürtünme katsayısı (COF) değerleri, %2 SiC ve %3 C ile takviye edilmiş epoksi kompozitlerde gözlemlenmiştir. Epoksiye sert parçacıkların ilavesi, hibrit kompozitlerin aşınma performansını artırmıştır. Aşınmış numunelerin SEM analizinde, katkısız epoksi örneklerinde yüzey deformasyonlarının ve malzeme kayıplarının daha belirgin olduğu görülmüştür.

References

  • [1] Q. Wang and D. S. Su, “Reinforcing epoxy resin with activated carbon: A way of high rate of quality and price,” Compos. Commun., vol. 9, pp. 54–57, 2018, doi: https://doi.org/10.1016/j.coco.2018.03.008.
  • [2] M. E. Demir, Y. H. Çelik, and E. Kilickap, “Effect of matrix material and orientation angle on tensile and tribological behavior of jute reinforced composites,” vol. 61, no. 8, pp. 806–812, 2019, doi: doi:10.3139/120.111388.
  • [3] A. Khan et al., “Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites,” 2017. doi: 10.3390/polym9120642.
  • [4] M. E. Demir and R. K. Ergün, “Mechanical and wear performance of Al-, mica-, SiO2-filled glass fiber-reinforced composites and prediction of wear properties with artificial neural networks,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., p. 09544089241307840, Jan. 2025, doi: 10.1177/09544089241307840.
  • [5] B. Weidenfeller, M. Höfer, and F. R. Schilling, “Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene,” Compos. Part A Appl. Sci. Manuf., vol. 35, no. 4, pp. 423–429, 2004, doi: https://doi.org/10.1016/j.compositesa.2003.11.005.
  • [6] M. E. Demir, H. Topkaya, T. Bağatır, and Y. H. Çelik, “Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites TT - Grafen nanoplatelet takviyeli epoksi kompozitlerin mekanik özellikleri ve aşınma davranışı üzerinde takviye oranının etkisi,” Politek. Derg., vol. 27, no. 6, pp. 2181–2192, 2024, doi: 10.2339/politeknik.1307849.
  • [7] M. Kalin, M. Zalaznik, and S. Novak, “Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles,” Wear, vol. 332–333, pp. 855–862, 2015, doi: 10.1016/j.wear.2014.12.036.
  • [8] J. T. Shen, M. Top, Y. T. Pei, and J. T. M. De Hosson, “Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles,” Wear, vol. 322–323, pp. 171–180, 2015, doi: https://doi.org/10.1016/j.wear.2014.11.015.
  • [9] Siddhartha, A. Patnaik, and A. D. Bhatt, “Mechanical and dry sliding wear characterization of epoxy–TiO2 particulate filled functionally graded composites materials using Taguchi design of experiment,” Mater. Des., vol. 32, no. 2, pp. 615–627, 2011, doi: https://doi.org/10.1016/j.matdes.2010.08.011.
  • [10] N. Guermazi, N. Haddar, K. Elleuch, and H. F. Ayedi, “Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures,” Mater. Des., vol. 56, pp. 714–724, 2014, doi: https://doi.org/10.1016/j.matdes.2013.11.043.
  • [11] N. B. Karthik Babu, T. Ramesh, and S. Muthukumaran, “Physical, tribological and viscoelastic behavior of machining wear debris powder reinforced epoxy composites,” J. Clean. Prod., vol. 272, p. 122786, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122786.
  • [12] C. Kanchanomai, N. Noraphaiphipaksa, and Y. Mutoh, “Wear characteristic of epoxy resin filled with crushed-silica particles,” Compos. Part B Eng., vol. 42, no. 6, pp. 1446–1452, 2011, doi: https://doi.org/10.1016/j.compositesb.2011.04.046.
  • [13] J. Abenojar, J. Tutor, Y. Ballesteros, J. C. del Real, and M. A. Martínez, “Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites,” Compos. Part B Eng., vol. 120, pp. 42–53, 2017, doi: https://doi.org/10.1016/j.compositesb.2017.03.047.
  • [14] W. Nhuapeng, W. Thamjaree, S. Kumfu, P. Singjai, and T. Tunkasiri, “Fabrication and mechanical properties of silicon carbide nanowires/epoxy resin composites,” Curr. Appl. Phys., vol. 8, no. 3, pp. 295–299, 2008, doi: https://doi.org/10.1016/j.cap.2007.10.074.
  • [15] M. Sudheer, R. Prabhu, K. Raju, and T. Bhat, “Effect of Filler Content on the Performance of Epoxy/PTW Composites,” Adv. Mater. Sci. Eng., vol. 2014, no. 1, p. 970468, Jan. 2014, doi: https://doi.org/10.1155/2014/970468.
  • [16] P. Jagadeesh, S. M. Rangappa, and S. Siengchin, “Friction and wear analysis of basalt micro-filler loaded various epoxies and esters based thermoset polymer composites,” J. Build. Eng., vol. 86, p. 108927, 2024, doi: https://doi.org/10.1016/j.jobe.2024.108927.
  • [17] M. Mucha et al., “Effect of MWCNTs on Wear Behavior of Epoxy Resin for Aircraft Applications,” 2020. doi: 10.3390/ma13122696.
  • [18] M. G. Veena, N. M. Renukappa, B. Suresha, and K. N. Shivakumar, “Tribological and electrical properties of silica-filled epoxy nanocomposites,” Polym. Compos., vol. 32, no. 12, pp. 2038–2050, Dec. 2011, doi: https://doi.org/10.1002/pc.21221.
  • [19] S. Bobby and M. A. Samad, “Enhancement of tribological performance of epoxy bulk composites and composite coatings using micro/nano fillers: a review,” Polym. Adv. Technol., vol. 28, no. 6, pp. 633–644, Jun. 2017, doi: https://doi.org/10.1002/pat.3961.
  • [20] J. Abenojar, Y. Ballesteros, M. Bahrami, M. A. Martínez, and J. C. del Real, “Wear Behavior of Epoxy Resin Reinforced with Ceramic Nano- and Microparticles,” 2024. doi: 10.3390/polym16070878.
  • [21] S. Lu, J.- Hongyu, H. Zhang, and X. Wang, “Wear and mechanical properties of epoxy/SiO2-TiO2 composites,” J. Mater. Sci., vol. 40, no. 11, pp. 2815–2821, 2005, doi: 10.1007/s10853-005-2437-2.
  • [22] R. Medina, F. Haupert, and A. K. Schlarb, “Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement,” J. Mater. Sci., vol. 43, no. 9, pp. 3245–3252, 2008, doi: 10.1007/s10853-008-2547-8.
  • [23] M. M. Sakka, Z. Antar, K. Elleuch, and J. F. Feller, “Tribological response of an epoxy matrix filled with graphite and/or carbon nanotubes,” Friction, vol. 5, no. 2, pp. 171–182, 2017, doi: 10.1007/s40544-017-0144-z.
  • [24] K. Y. Eayal Awwad, B. F. Yousif, K. Fallahnezhad, K. Saleh, and X. Zeng, “Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites,” Friction, vol. 9, no. 4, pp. 856–875, 2021, doi: 10.1007/s40544-020-0453-5.
  • [25] B. Suresha, B.N. Ramesh, K.M. Subbaya, and G. Chandramohan, “Mechanical and Three-body Abrasive Wear Behavior of Carbon-Epoxy Composite With and Without Graphite Filler,” J. Compos. Mater., vol. 44, no. 21, pp. 2509–2519, May 2010, doi: 10.1177/0021998310369589.
  • [26] B Suresha, BL Ravishankar, and L Sukanya, “Dynamic mechanical analysis and three-body abrasive wear behavior of epoxy nanocomposites,” J. Reinf. Plast. Compos., vol. 32, no. 1, pp. 61–71, Oct. 2012, doi: 10.1177/0731684412464914.
  • [27] L. N. Rout, D. Mishra, and P. T. R. Swain, “Influence of Silicon Carbide (SiC) Reinforcement on Sliding and Erosive Wear Characteristics of Glass Fiber/Epoxy Hybrid Composites,” Trans. Indian Inst. Met., vol. 76, no. 4, pp. 1113–1121, 2023, doi: 10.1007/s12666-022-02828-7.
  • [28] A. Nassar, M. Younis, M. Ismail, and E. Nassar, “Improved Wear-Resistant Performance of Epoxy Resin Composites Using Ceramic Particles,” 2022. doi: 10.3390/polym14020333.
  • [29] B. Li, S. Qian, C. Sun, M. Wang, and X. Zhan, “Mechanical properties and wear resistance of Cf / epoxy resin composites with in-situ grown SiC nanowires on carbon fibers,” Compos. Interfaces, vol. 30, no. 9, pp. 923–939, Sep. 2023, doi: 10.1080/09276440.2023.2179250.
  • [30] N. F. Apriliani, W. A. Wirawan, M. Muslimin, R. A. Ilyas, M. A. Rahma, and A. T. Agus Salim, “Improving wear performance, physical, and mechanical properties of iron sand/epoxy composite modified with carbon powder,” Results Mater., vol. 21, p. 100532, 2024, doi: https://doi.org/10.1016/j.rinma.2024.100532.
  • [31] Y. Li, D. Li, H. Cheng, C. Han, and L. Xiao, “Morphology and physical properties of composites based on high-density polyethylene/propylene-ethylene random copolymers blends and carbon black,” Polym. Test., vol. 123, p. 108050, 2023, doi: https://doi.org/10.1016/j.polymertesting.2023.108050.
  • [32] S. Wu, Y. Liu, Y. Ge, L. Ran, K. Peng, and M. Yi, “Structural transformation of carbon/carbon composites for aircraft brake pairs in the braking process,” Tribol. Int., vol. 102, pp. 497–506, 2016, doi: https://doi.org/10.1016/j.triboint.2016.06.018.
  • [33] Haixia Hu and Sinian Zhang, “Mechanical and tribological properties of silicon carbide /carbon fiber/epoxy resin based composites,” J. Eng. Fiber. Fabr., vol. 19, p. 15589250231214228, Jan. 2024, doi: 10.1177/15589250231214229.
  • [34] E. Çetkin, M. E. Demir, and R. K. Ergün, “The effect of different fillers, loads, and sliding distance on adhesive wear in woven e-glass fabric composites,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., p. 095440892211368, 2022, doi: 10.1177/09544089221136808.
  • [35] W. S. Kharat and J. S. Sidhu, “Development of epoxy based composites filled with boron carbide (B4C), tungsten disulphide (WS2) and evaluation of its mechanical properties,” Int J Mech Eng Res, vol. 6, pp. 19–30, 2016.
  • [36] H. Gürbüz, İ. H. Akcan, Ş. Baday, and M. E. Demir, “Investigation of Drilling Performances, Tribological and Mechanical Behaviors of GFRC Filled with B4C and Gr,” Arab. J. Sci. Eng., 2024, doi: 10.1007/s13369-024-09392-w.
  • [37] K. Alaneme, B. O. Ademilua, and M. Bodunrin, “Mechanical Properties and Corrosion Behaviour of Aluminium Hybrid Composites Reinforced with Silicon Carbide and Bamboo Leaf Ash,” Tribol. Ind., vol. 35, pp. 25–35, Mar. 2013.
  • [38] B. Suresha, K. Adappa, and N. K. Subramani, “Mechanical and tribological behaviours of epoxy hybrid composites reinforced by carbon fibers and silicon carbide whiskers,” Mater. Today Proc., vol. 5, no. 8, Part 3, pp. 16658–16668, 2018, doi: https://doi.org/10.1016/j.matpr.2018.06.027.
  • [39] X. Zhou, D. Su, C. Wu, and L. Liu, “Tensile Mechanical Properties and Strengthening Mechanism of Hybrid Carbon Nanotube and Silicon Carbide Nanoparticle-Reinforced Magnesium Alloy Composites,” J. Nanomater., vol. 2012, no. 1, p. 851862, Jan. 2012, doi: https://doi.org/10.1155/2012/851862.
  • [40] M. Y. Zhou et al., “Achieving ultra-high strength and good ductility in AZ61 alloy composites containing hybrid micron SiC and carbon nanotubes reinforcements,” Mater. Sci. Eng. A, vol. 768, p. 138447, 2019, doi: https://doi.org/10.1016/j.msea.2019.138447.
  • [41] Z. Lv, J. Sha, G. Lin, J. Wang, Y. Guo, and S. Dong, “Mechanical and thermal expansion behavior of hybrid aluminum matrix composites reinforced with SiC particles and short carbon fibers,” J. Alloys Compd., vol. 947, p. 169550, 2023, doi: https://doi.org/10.1016/j.jallcom.2023.169550.
  • [42] Y. Yamaguchi, Tribology of plastic materials: their characteristics and applications to sliding components, vol. 16. Elsevier, 1990.
  • [43] H. Unal, A. Mimaroglu, U. Kadıoglu, and H. Ekiz, “Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions,” Mater. Des., vol. 25, no. 3, pp. 239–245, 2004, doi: https://doi.org/10.1016/j.matdes.2003.10.009.
  • [44] A. Erdoğan, M. S. Gök, V. Koç, and A. Günen, “Friction and wear behavior of epoxy composite filled with industrial wastes,” J. Clean. Prod., vol. 237, p. 117588, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.07.063.
  • [45] M. E. Demir, “The effect of filler type (tungsten carbide, zinc oxide) and content on the mechanical and wear behavior of jute/flax reinforced epoxy hybrid composites: Experimental and artificial neural network analysis,” Polym. Compos., vol. n/a, no. n/a, Apr. 2025, doi: https://doi.org/10.1002/pc.29879.
  • [46] A. A. El-Hameed El-Ebissy, M. N. Michael, and S. K. Eldin Abdelhameed, “Effect of nano zinc oxide on the structural characteristic, tensile thermal properties of textile fabrics,” J. Ind. Text., vol. 46, no. 1, pp. 130–142, Mar. 2015, doi: 10.1177/1528083715576321.
  • [47] Amal Nassar, Mostafa Salem, Ismail El-Batanony, and Eman Nassar, “Improving wear resistance of epoxy/SiC composite using a modified apparatus,” Polym. Polym. Compos., vol. 29, no. 9_suppl, pp. S389–S399, Mar. 2021, doi: 10.1177/09673911211002731.
  • [48] B. Suresha, G. Chandramohan, Kishore, P. Sampathkumaran, and S. Seetharamu, “Mechanical and three-body abrasive wear behaviour of SiC filled glass-epoxy composites,” Polym. Compos., vol. 29, no. 9, pp. 1020–1025, Sep. 2008, doi: https://doi.org/10.1002/pc.20576.
  • [49] Q. L. Ji, M. Q. Zhang, M. Z. Rong, B. Wetzel, and K. Friedrich, “Friction and Wear of Epoxy Composites Containing Surface Modified SiC Nanoparticles,” Tribol. Lett., vol. 20, no. 2, pp. 115–123, 2005, doi: 10.1007/s11249-005-8301-3.
  • [50] K. M. Subbaya, B. Suresha, N. Rajendra, and Y. S. Varadarajan, “Taguchi approach for characterization of three-body abrasive wear of carbon-epoxy composite with and without SiC filler,” Compos. Interfaces, vol. 19, no. 5, pp. 297–311, Jul. 2012, doi: 10.1080/15685543.2012.720903.
  • [51] K. Kumaresan, G. Chandramohan, M. Senthilkumar, B. Suresha, and S. Indran, “Dry Sliding Wear Behaviour of Carbon Fabric-Reinforced Epoxy Composite with and without Silicon Carbide,” Compos. Interfaces, vol. 18, no. 6, pp. 509–526, Jan. 2011, doi: 10.1163/156855411X610241.

Tensile and Wear Behaviour of Hybrid SiC-C Reinforced Epoxy Composites

Year 2025, Volume: 16 Issue: 3, 763 - 770
https://doi.org/10.24012/dumf.1753416

Abstract

In this study, the wear and tensile behaviours of epoxy composites reinforced with SiC (silicon carbide) and C (carbon) were investigated. The influence of SiC and C reinforcement ratios and load parameters on the wear performance were systematically evaluated. The ultimate tensile load and deformation values were observed in neat epoxy samples. The incorporation of SiC and C particles adversely affected the tensile load of hybrid composite due to agglomeration of particles and weak bonding between filler and epoxy. When the SiC content was kept constant and the C content was increased, a noticeable improvement in the tensile load of the composite was observed. Conversely, when the C content was constant and SiC content was increased from 3% to 6%, the tensile load increased from 2053 N to 2409 N. Wear tests were conducted under two different loads (3N and 7N). The lowest coefficient of friction (COF) values were observed in epoxy composites reinforced with 6% SiC and 2% C due to protective layer formation on matrix surface by hard SiC particles and C particles. The addition of hard particles into the epoxy enhanced the wear performance of hybrid composites. SEM analysis of worn samples revealed that, surface deformations and material loss were more pronounced in the neat epoxy samples.

References

  • [1] Q. Wang and D. S. Su, “Reinforcing epoxy resin with activated carbon: A way of high rate of quality and price,” Compos. Commun., vol. 9, pp. 54–57, 2018, doi: https://doi.org/10.1016/j.coco.2018.03.008.
  • [2] M. E. Demir, Y. H. Çelik, and E. Kilickap, “Effect of matrix material and orientation angle on tensile and tribological behavior of jute reinforced composites,” vol. 61, no. 8, pp. 806–812, 2019, doi: doi:10.3139/120.111388.
  • [3] A. Khan et al., “Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites,” 2017. doi: 10.3390/polym9120642.
  • [4] M. E. Demir and R. K. Ergün, “Mechanical and wear performance of Al-, mica-, SiO2-filled glass fiber-reinforced composites and prediction of wear properties with artificial neural networks,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., p. 09544089241307840, Jan. 2025, doi: 10.1177/09544089241307840.
  • [5] B. Weidenfeller, M. Höfer, and F. R. Schilling, “Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene,” Compos. Part A Appl. Sci. Manuf., vol. 35, no. 4, pp. 423–429, 2004, doi: https://doi.org/10.1016/j.compositesa.2003.11.005.
  • [6] M. E. Demir, H. Topkaya, T. Bağatır, and Y. H. Çelik, “Impact of Reinforcement Ratio on Mechanical Properties and Wear Behaviour of Graphene Nanoplatelet Reinforced Epoxy Composites TT - Grafen nanoplatelet takviyeli epoksi kompozitlerin mekanik özellikleri ve aşınma davranışı üzerinde takviye oranının etkisi,” Politek. Derg., vol. 27, no. 6, pp. 2181–2192, 2024, doi: 10.2339/politeknik.1307849.
  • [7] M. Kalin, M. Zalaznik, and S. Novak, “Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles,” Wear, vol. 332–333, pp. 855–862, 2015, doi: 10.1016/j.wear.2014.12.036.
  • [8] J. T. Shen, M. Top, Y. T. Pei, and J. T. M. De Hosson, “Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles,” Wear, vol. 322–323, pp. 171–180, 2015, doi: https://doi.org/10.1016/j.wear.2014.11.015.
  • [9] Siddhartha, A. Patnaik, and A. D. Bhatt, “Mechanical and dry sliding wear characterization of epoxy–TiO2 particulate filled functionally graded composites materials using Taguchi design of experiment,” Mater. Des., vol. 32, no. 2, pp. 615–627, 2011, doi: https://doi.org/10.1016/j.matdes.2010.08.011.
  • [10] N. Guermazi, N. Haddar, K. Elleuch, and H. F. Ayedi, “Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures,” Mater. Des., vol. 56, pp. 714–724, 2014, doi: https://doi.org/10.1016/j.matdes.2013.11.043.
  • [11] N. B. Karthik Babu, T. Ramesh, and S. Muthukumaran, “Physical, tribological and viscoelastic behavior of machining wear debris powder reinforced epoxy composites,” J. Clean. Prod., vol. 272, p. 122786, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122786.
  • [12] C. Kanchanomai, N. Noraphaiphipaksa, and Y. Mutoh, “Wear characteristic of epoxy resin filled with crushed-silica particles,” Compos. Part B Eng., vol. 42, no. 6, pp. 1446–1452, 2011, doi: https://doi.org/10.1016/j.compositesb.2011.04.046.
  • [13] J. Abenojar, J. Tutor, Y. Ballesteros, J. C. del Real, and M. A. Martínez, “Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites,” Compos. Part B Eng., vol. 120, pp. 42–53, 2017, doi: https://doi.org/10.1016/j.compositesb.2017.03.047.
  • [14] W. Nhuapeng, W. Thamjaree, S. Kumfu, P. Singjai, and T. Tunkasiri, “Fabrication and mechanical properties of silicon carbide nanowires/epoxy resin composites,” Curr. Appl. Phys., vol. 8, no. 3, pp. 295–299, 2008, doi: https://doi.org/10.1016/j.cap.2007.10.074.
  • [15] M. Sudheer, R. Prabhu, K. Raju, and T. Bhat, “Effect of Filler Content on the Performance of Epoxy/PTW Composites,” Adv. Mater. Sci. Eng., vol. 2014, no. 1, p. 970468, Jan. 2014, doi: https://doi.org/10.1155/2014/970468.
  • [16] P. Jagadeesh, S. M. Rangappa, and S. Siengchin, “Friction and wear analysis of basalt micro-filler loaded various epoxies and esters based thermoset polymer composites,” J. Build. Eng., vol. 86, p. 108927, 2024, doi: https://doi.org/10.1016/j.jobe.2024.108927.
  • [17] M. Mucha et al., “Effect of MWCNTs on Wear Behavior of Epoxy Resin for Aircraft Applications,” 2020. doi: 10.3390/ma13122696.
  • [18] M. G. Veena, N. M. Renukappa, B. Suresha, and K. N. Shivakumar, “Tribological and electrical properties of silica-filled epoxy nanocomposites,” Polym. Compos., vol. 32, no. 12, pp. 2038–2050, Dec. 2011, doi: https://doi.org/10.1002/pc.21221.
  • [19] S. Bobby and M. A. Samad, “Enhancement of tribological performance of epoxy bulk composites and composite coatings using micro/nano fillers: a review,” Polym. Adv. Technol., vol. 28, no. 6, pp. 633–644, Jun. 2017, doi: https://doi.org/10.1002/pat.3961.
  • [20] J. Abenojar, Y. Ballesteros, M. Bahrami, M. A. Martínez, and J. C. del Real, “Wear Behavior of Epoxy Resin Reinforced with Ceramic Nano- and Microparticles,” 2024. doi: 10.3390/polym16070878.
  • [21] S. Lu, J.- Hongyu, H. Zhang, and X. Wang, “Wear and mechanical properties of epoxy/SiO2-TiO2 composites,” J. Mater. Sci., vol. 40, no. 11, pp. 2815–2821, 2005, doi: 10.1007/s10853-005-2437-2.
  • [22] R. Medina, F. Haupert, and A. K. Schlarb, “Improvement of tensile properties and toughness of an epoxy resin by nanozirconium-dioxide reinforcement,” J. Mater. Sci., vol. 43, no. 9, pp. 3245–3252, 2008, doi: 10.1007/s10853-008-2547-8.
  • [23] M. M. Sakka, Z. Antar, K. Elleuch, and J. F. Feller, “Tribological response of an epoxy matrix filled with graphite and/or carbon nanotubes,” Friction, vol. 5, no. 2, pp. 171–182, 2017, doi: 10.1007/s40544-017-0144-z.
  • [24] K. Y. Eayal Awwad, B. F. Yousif, K. Fallahnezhad, K. Saleh, and X. Zeng, “Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites,” Friction, vol. 9, no. 4, pp. 856–875, 2021, doi: 10.1007/s40544-020-0453-5.
  • [25] B. Suresha, B.N. Ramesh, K.M. Subbaya, and G. Chandramohan, “Mechanical and Three-body Abrasive Wear Behavior of Carbon-Epoxy Composite With and Without Graphite Filler,” J. Compos. Mater., vol. 44, no. 21, pp. 2509–2519, May 2010, doi: 10.1177/0021998310369589.
  • [26] B Suresha, BL Ravishankar, and L Sukanya, “Dynamic mechanical analysis and three-body abrasive wear behavior of epoxy nanocomposites,” J. Reinf. Plast. Compos., vol. 32, no. 1, pp. 61–71, Oct. 2012, doi: 10.1177/0731684412464914.
  • [27] L. N. Rout, D. Mishra, and P. T. R. Swain, “Influence of Silicon Carbide (SiC) Reinforcement on Sliding and Erosive Wear Characteristics of Glass Fiber/Epoxy Hybrid Composites,” Trans. Indian Inst. Met., vol. 76, no. 4, pp. 1113–1121, 2023, doi: 10.1007/s12666-022-02828-7.
  • [28] A. Nassar, M. Younis, M. Ismail, and E. Nassar, “Improved Wear-Resistant Performance of Epoxy Resin Composites Using Ceramic Particles,” 2022. doi: 10.3390/polym14020333.
  • [29] B. Li, S. Qian, C. Sun, M. Wang, and X. Zhan, “Mechanical properties and wear resistance of Cf / epoxy resin composites with in-situ grown SiC nanowires on carbon fibers,” Compos. Interfaces, vol. 30, no. 9, pp. 923–939, Sep. 2023, doi: 10.1080/09276440.2023.2179250.
  • [30] N. F. Apriliani, W. A. Wirawan, M. Muslimin, R. A. Ilyas, M. A. Rahma, and A. T. Agus Salim, “Improving wear performance, physical, and mechanical properties of iron sand/epoxy composite modified with carbon powder,” Results Mater., vol. 21, p. 100532, 2024, doi: https://doi.org/10.1016/j.rinma.2024.100532.
  • [31] Y. Li, D. Li, H. Cheng, C. Han, and L. Xiao, “Morphology and physical properties of composites based on high-density polyethylene/propylene-ethylene random copolymers blends and carbon black,” Polym. Test., vol. 123, p. 108050, 2023, doi: https://doi.org/10.1016/j.polymertesting.2023.108050.
  • [32] S. Wu, Y. Liu, Y. Ge, L. Ran, K. Peng, and M. Yi, “Structural transformation of carbon/carbon composites for aircraft brake pairs in the braking process,” Tribol. Int., vol. 102, pp. 497–506, 2016, doi: https://doi.org/10.1016/j.triboint.2016.06.018.
  • [33] Haixia Hu and Sinian Zhang, “Mechanical and tribological properties of silicon carbide /carbon fiber/epoxy resin based composites,” J. Eng. Fiber. Fabr., vol. 19, p. 15589250231214228, Jan. 2024, doi: 10.1177/15589250231214229.
  • [34] E. Çetkin, M. E. Demir, and R. K. Ergün, “The effect of different fillers, loads, and sliding distance on adhesive wear in woven e-glass fabric composites,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., p. 095440892211368, 2022, doi: 10.1177/09544089221136808.
  • [35] W. S. Kharat and J. S. Sidhu, “Development of epoxy based composites filled with boron carbide (B4C), tungsten disulphide (WS2) and evaluation of its mechanical properties,” Int J Mech Eng Res, vol. 6, pp. 19–30, 2016.
  • [36] H. Gürbüz, İ. H. Akcan, Ş. Baday, and M. E. Demir, “Investigation of Drilling Performances, Tribological and Mechanical Behaviors of GFRC Filled with B4C and Gr,” Arab. J. Sci. Eng., 2024, doi: 10.1007/s13369-024-09392-w.
  • [37] K. Alaneme, B. O. Ademilua, and M. Bodunrin, “Mechanical Properties and Corrosion Behaviour of Aluminium Hybrid Composites Reinforced with Silicon Carbide and Bamboo Leaf Ash,” Tribol. Ind., vol. 35, pp. 25–35, Mar. 2013.
  • [38] B. Suresha, K. Adappa, and N. K. Subramani, “Mechanical and tribological behaviours of epoxy hybrid composites reinforced by carbon fibers and silicon carbide whiskers,” Mater. Today Proc., vol. 5, no. 8, Part 3, pp. 16658–16668, 2018, doi: https://doi.org/10.1016/j.matpr.2018.06.027.
  • [39] X. Zhou, D. Su, C. Wu, and L. Liu, “Tensile Mechanical Properties and Strengthening Mechanism of Hybrid Carbon Nanotube and Silicon Carbide Nanoparticle-Reinforced Magnesium Alloy Composites,” J. Nanomater., vol. 2012, no. 1, p. 851862, Jan. 2012, doi: https://doi.org/10.1155/2012/851862.
  • [40] M. Y. Zhou et al., “Achieving ultra-high strength and good ductility in AZ61 alloy composites containing hybrid micron SiC and carbon nanotubes reinforcements,” Mater. Sci. Eng. A, vol. 768, p. 138447, 2019, doi: https://doi.org/10.1016/j.msea.2019.138447.
  • [41] Z. Lv, J. Sha, G. Lin, J. Wang, Y. Guo, and S. Dong, “Mechanical and thermal expansion behavior of hybrid aluminum matrix composites reinforced with SiC particles and short carbon fibers,” J. Alloys Compd., vol. 947, p. 169550, 2023, doi: https://doi.org/10.1016/j.jallcom.2023.169550.
  • [42] Y. Yamaguchi, Tribology of plastic materials: their characteristics and applications to sliding components, vol. 16. Elsevier, 1990.
  • [43] H. Unal, A. Mimaroglu, U. Kadıoglu, and H. Ekiz, “Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions,” Mater. Des., vol. 25, no. 3, pp. 239–245, 2004, doi: https://doi.org/10.1016/j.matdes.2003.10.009.
  • [44] A. Erdoğan, M. S. Gök, V. Koç, and A. Günen, “Friction and wear behavior of epoxy composite filled with industrial wastes,” J. Clean. Prod., vol. 237, p. 117588, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.07.063.
  • [45] M. E. Demir, “The effect of filler type (tungsten carbide, zinc oxide) and content on the mechanical and wear behavior of jute/flax reinforced epoxy hybrid composites: Experimental and artificial neural network analysis,” Polym. Compos., vol. n/a, no. n/a, Apr. 2025, doi: https://doi.org/10.1002/pc.29879.
  • [46] A. A. El-Hameed El-Ebissy, M. N. Michael, and S. K. Eldin Abdelhameed, “Effect of nano zinc oxide on the structural characteristic, tensile thermal properties of textile fabrics,” J. Ind. Text., vol. 46, no. 1, pp. 130–142, Mar. 2015, doi: 10.1177/1528083715576321.
  • [47] Amal Nassar, Mostafa Salem, Ismail El-Batanony, and Eman Nassar, “Improving wear resistance of epoxy/SiC composite using a modified apparatus,” Polym. Polym. Compos., vol. 29, no. 9_suppl, pp. S389–S399, Mar. 2021, doi: 10.1177/09673911211002731.
  • [48] B. Suresha, G. Chandramohan, Kishore, P. Sampathkumaran, and S. Seetharamu, “Mechanical and three-body abrasive wear behaviour of SiC filled glass-epoxy composites,” Polym. Compos., vol. 29, no. 9, pp. 1020–1025, Sep. 2008, doi: https://doi.org/10.1002/pc.20576.
  • [49] Q. L. Ji, M. Q. Zhang, M. Z. Rong, B. Wetzel, and K. Friedrich, “Friction and Wear of Epoxy Composites Containing Surface Modified SiC Nanoparticles,” Tribol. Lett., vol. 20, no. 2, pp. 115–123, 2005, doi: 10.1007/s11249-005-8301-3.
  • [50] K. M. Subbaya, B. Suresha, N. Rajendra, and Y. S. Varadarajan, “Taguchi approach for characterization of three-body abrasive wear of carbon-epoxy composite with and without SiC filler,” Compos. Interfaces, vol. 19, no. 5, pp. 297–311, Jul. 2012, doi: 10.1080/15685543.2012.720903.
  • [51] K. Kumaresan, G. Chandramohan, M. Senthilkumar, B. Suresha, and S. Indran, “Dry Sliding Wear Behaviour of Carbon Fabric-Reinforced Epoxy Composite with and without Silicon Carbide,” Compos. Interfaces, vol. 18, no. 6, pp. 509–526, Jan. 2011, doi: 10.1163/156855411X610241.
There are 51 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Articles
Authors

Mehmet Emin Demir 0000-0001-9630-6378

Raşit Koray Ergün 0000-0002-5440-0646

Early Pub Date September 30, 2025
Publication Date October 7, 2025
Submission Date July 29, 2025
Acceptance Date September 10, 2025
Published in Issue Year 2025 Volume: 16 Issue: 3

Cite

IEEE M. E. Demir and R. K. Ergün, “Tensile and Wear Behaviour of Hybrid SiC-C Reinforced Epoxy Composites”, DUJE, vol. 16, no. 3, pp. 763–770, 2025, doi: 10.24012/dumf.1753416.